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ABSTRACT
Accurately predicting the populations with difficulties accessing drinking water

because of drought and taking appropriate mitigation measures can minimize eco-
nomic loss and personal injury. Taking the 2013 Guizhou extreme summer drought
as an example, on the basis of collecting meteorological, basic geographic infor-
mation, socioeconomic data, and disaster effect data of the study area, a rapid as-
sessment model based on a backpropagation (BP) neural network was constructed.
Six factors were chosen for the input of the network: the average monthly pre-
cipitation, Digital Elevation Model (DEM), river density, population density, road
density, and gross domestic product (GDP). The population affected by drought was
the model’s output. Using samples from 50 drought-affected counties in Guizhou
Province for network training, the model’s parameters were optimized. Using the
trained model, the populations in need were predicted using the other 74 drought-
affected counties. The accuracy of the prediction model, represented by the coeffi-
cient of determination (R2) and the normalized root mean square error (N-RMSE),
yielded 0.7736 for R2 and 0.0070 for N-RMSE. The method may provide an effec-
tive reference for rapid assessment of the population in need and disaster effect
verification.

Key Words: geographical factor, backpropagation (BP) neural network, popula-
tions with difficulties accessing drinking water because of drought,
rapid assessment, 2013 Guizhou Extreme Drought of China.
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Rapid Assessment of Populations with Difficulties in Drinking Water Access

INTRODUCTION

Most parts of China’s Guizhou Province have been gripped by hot ambient air
temperatures and drought since early June 2013 as rainfall has been 70% less than
the long-term average (1961–2013). Guizhou has received the least precipitation in
the recent 50 years. The duration of more than 35◦ high temperatures in north-
eastern Guizhou Province was 11–20 days from late June 2013 to early August 2013.
Water discharge from the Qingshui, Chishui, and Wuyang Rivers is 20%–50% less
than normal. Water storage of the water conservancy project of Guizhou Province is
6% less than the average over the same period (Economic Daily 2013). According to
the Guizhou Provincial Department of Civil Affairs, more than 12.19 million people
in 76 of the province’s cities and counties were suffering from drought. There were
14 extreme drought counties, 30 severe drought counties, 19 moderate drought
counties, and 13 light drought counties. The drought has also affected 0.84 million
hectares of crops and left 2.02 million persons short of drinking water, causing direct
economic losses of more than 5 billion yuan (Nanchang Daily 2013). Severe drought
has led to problems of difficulty in accessing drinking water (Figure 1).

At present, determination of populations with difficulties accessing drinking wa-
ter because of drought in China is mainly based on disaster reporting by local
governments. Until now, there is no efficient rapid assessment system for the quality
of disaster data reported by local governments. Therefore, it is very important to
accurately predict the occurrence and development of populations with difficulties
accessing drinking water because of drought (hereafter referred to as “drought at-
risk populations”) and take appropriate mitigation measures, actions that will greatly
minimize the economic loss and personal injuries. With the information, some pos-
sible mitigation measures may be taken by local governments, including use of

Figure 1. Drought at-risk populations in Guizhou Province (June 14–July 31,
2013).
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water conservation technology, use of strategic groundwater, and water resources
management.

A recent World Health Organization (WHO) review recommended a minimum
of 7.5 liters water per capita per day to meet the requirements of most people under
most conditions (Howard and Bartram 2003). The International Water Manage-
ment Institute (IWMI) projects that 1.8 billion people will live in areas facing physi-
cal water scarcity by 2025 (Seckler et al. 1998). The amount of water use varies with
distance from the water source and with climate conditions (Christine and Richard
2006). Many water-scarce areas in Africa and the Near East have some of the high-
est population growth rates in the world. In Africa, one-third of the people live in
drought-prone areas (ECA 2000). Based on geographic information system (GIS)
spatial analysis, an assessment with focus on water availability during drought con-
ditions was conducted under pastoral livestock systems in the drought-prone Isiolo
District, Kenya. Thematic information was gathered including rainfall distribution,
land use-cover, drainage systems, and hydrogeology and so on (Mati et al . 2005).
Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how
rural livelihoods are affected by seasonal stress and long-term drought (Calow et al.
2010). Current and future social and environmental pressures on drinking water
conditions, including climate change, were evaluated qualitatively in the Mediter-
ranean area (Ana et al. 2007). Until now, few similar studies have been carried out.
There is a lack of research on a rapid assessment model of population in drinking
water access because of drought. In this respect, the present study contributes to
drought prevention for use by local governments.

Artificial neural networks (ANNs), which emulate the parallel distributed process-
ing of the human nervous system, have proven to be very successful in dealing with
complicated problems, such as function approximation and pattern recognition
(Bishop 1995; Jiang 2001). Due to their powerful capability and functionality, ANNs
provide an alternative approach for many assessment problems that are difficult
to solve by conventional approaches (Luk et al. 2000). The Backpropagation (BP)
neural network is currently the most widely used ANN. It has been used increasingly
in various aspects of geographical and ecological sciences because of its ability to
model both linear and nonlinear systems without the need to make any assumptions
as are implicit in most traditional statistical approaches (French et al. 1992; Chang
et al . 2007; Luk et al. 2000; Wang and Wang 2011). A system of evaluation of urban
land use intensity of Changsha City, China, which includes nine indexes (including
population density, green cover percentage, and so on) was determined using a BP
neural network. The level of intensified urban utilization from 1999–2006 in Chang-
sha City was carried out by Zhu et al . (2009). A BP neural network has been applied
to a water environmental quality evaluation in the Weihe River Baoji segment of
China (Xie 2013). Generally speaking, the BP neural network used in the aforemen-
tioned studies was reported to yield significantly better results than conventional
methods. Therefore, it was chosen for this article to provide a technical support for
rapid assessment of drought at-risk populations.

The occurrence of drinking water problems is caused by many factors, and each
factor presents a nonlinear and uncertain relationship. Taking the 2013 Guizhou
extreme summer drought of China as an example, on the basis of collecting me-
teorological, basic geographic information, socioeconomic data, and disaster effect
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Rapid Assessment of Populations with Difficulties in Drinking Water Access

data for the study area, a rapid assessment model based on a BP neural network was
constructed. The objective of this study is two-fold: (1) to build an index system that
reflects the spatial distribution of drought at-risk populations and (2) to construct
a rapid assessment model of drought at-risk populations based on geographical fac-
tors using a BP neural network. The results from this study are intended to help
government agencies to judge and assist populations in need of drinking water
during times of drought.

BASIC PRINCIPLES OF A BP NEURAL NETWORK

Theoretical Basis

A BP neural network is a feedforward network with a nonlinear transformation
function and a multilayer perception algorithm. It consists of an input layer, a hidden
layer, and an output layer. The learning process consists of two parts (i.e., signal
forward transmission and error back propagation). Forward propagation means that
the input signals from the input layer pass through the hidden layer to the output
layer. Error back propagation refers to when the output signal and the desired output
signal do not match; the output error passes toward the error decrease direction
through the hidden layer to the input layer, modifies the threshold value and the
weight between the input layer and hidden layer, and the hidden layer and output
layer, to reduce errors through repeated training (Rumelhart et al . 1986).

BP Neural Network

The BP algorithm model is shown in Figure 2. The algorithm is as follows.
(1) Initialize data. In order to make the input parameters equally important and

avoid neurons in saturation, deal with the original data with Eq. (1), make the input
data fall between 0 and 1.

xi = xi − xmin

xmax − xmin
(1)

(2) Training. Suppose the input initialized values are x1,x2,x3 . . . . . . xn, the
weights between the input nodes and the hidden layer nodes are w ji , the weights
between the hidden layer nodes and the output nodes are vl j ,the thresholds of the
hidden layer and the output layer are θ j and θl , respectively, then the input and
output of nodes are calculated in Eqs. (2) and (3).

y j = f

(∑
w ji xi − θ j

)
(2)

a = f

(∑
vl j y j − θl

)
(3)

(3) Judge whether it meets the qualification. E stands for the error of output
nodes. Expected value t is known, error is calculated according to Eq. (4). If it
meets the qualification, the samples training are completed. If not, according to the
principle of decreasing the errors, adjust vl j firstly, and then adjust w ji and θ j , the
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H. Jia et al.

Figure 2. Flow chart for BP neural network.

network is trained using the revised values until it meets the requirements.

E = 1
2

∑
l

(t − a)2 (4)

(4) When the samples have completed training, input the initialized values of
predicted samples into the network, the predicted values will be obtained.

ANALYSIS OF FACTORS THAT INFLUENCE AT-RISK POPULATIONS

Selection of Influencing Factors

According to the Ministry of Water Resources’ standards of the People’s Republic
of China, the index for assessing drought at-risk populations is based on (a) distance
to access the water (>1 km), (b) needing to climb greater than 100 m vertically,
and (c) finding the water has F concentrations >1.1 mg/L (People’s Daily Online
1984). Referring to the current assessment indexes of drought at-risk populations
(Wang and Li 2001; Wang and Chen 2005; Yu 2008; Wang et al . 2006; Jia et al . 2009,
2011, 2012; Jia and Wang 2011), combined with environmental features of disaster-
affected areas, the six factors were selected as precipitation, Digital Elevation Model
(DEM), river density, population density, road density, and GDP. The data used come
from: DEM data of Guizhou Province with 30 m resolution, Guizhou Province Ad-
ministrative vector map, Guizhou Province 1:1,000,000 railways, national highways

104 Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015
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Rapid Assessment of Populations with Difficulties in Drinking Water Access

and provincial roads data, Guizhou Province 1:1,000,000 river maps, daily precipi-
tation data download from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/) in Guizhou Province of 2000–2013 year, 2009–2012 China
Statistical Yearbook, and county drought at-risk populations in Guizhou Province in
2013 provided by the National Disaster Reduction Center of China.

Factor Influence Analysis

Precipitation

Lack of water or using water of a poor quality are the basic reasons causing
rural populations with drinking water access difficulties (Yu 2008). Since mid-June
2013, the South China Sea summer monsoon was continually weak, which made
less rainfall in the regions of the Yangtze River and South China (Wu et al. 2003).
The East Asian summer monsoon was continually strong from mid-May 2013, in
addition to a slight weakening in early July 2013, the overall characteristic was
strong. The strong East Asian summer monsoon made water vapor in the western
Pacific Ocean to be transported northward. It resulted in more precipitation in
North China, less precipitation in South China (Shi et al. 1996; Guo et al. 2003).
Since late June 2013, controlled by the West Pacific subtropical high, the strong East
Asian summer monsoon and the weak South China Sea summer monsoon made
most parts of Guizhou Province hot and with less rainfall. The temperature of the
northeast, east, and the Chishui River Valley regions of Guizhou Province exceeded
35◦C. Rainfall was 70% less than the average for the same period. Extreme summer
drought appeared in late July 2013 to early August 2013.

The precipitation patterns of Guizhou Province showed that southeast and south-
west areas were higher than northwest and northeast areas. It is closely related to
mountains, terrain, slope, and altitude. From June 2013 to July 2013, the average
monthly precipitation of 13 weather stations in Guizhou Province was less than
20 mm (Figure 3). More severe drought disaster areas are concentrated in the
northeast and northwest of Guizhou Province, which was consistent with lower av-
erage monthly precipitation. Drought weather of Guizhou Province caused water
storage in reservoirs and ponds to be less than normal and declining underground
water levels, making it difficult to guarantee basic drinking water supplies.

Terrain

Located in the center of eastern Asia is one of the world’s three Karst concen-
trated regions, Guizhou Province is the central area in China’s Karst regions, with a
provincial Karst area of about 30 × 104 km2, accounting for 73.0% of the province’s
total land area. Guizhou Province is the largest Karst landform distribution area, the
strongest developments of Cone Karst in China, even the world (Sweeting 1993; Li
2004). Under this particular Karst topography and geological environmental con-
ditions of Guizhou, rainfall mostly flows away in the form of surface runoff; storage
of water is difficult. Poor water-retaining ability and deep underground water in
Karst counties made water resources’ development and utilization more difficult.
Guizhou Province is located in China’s western mountain plateau. The terrain’s
topography relief in the west is higher than that of eastern Guizhou Province, with

Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015 105
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H. Jia et al.

Figure 3. The average monthly precipitation in Guizhou Province (June to July
2013).

an average elevation of 1100 m (Figure 4). The province’s landscape can be broadly
divided into three basic types: plateaus, hills, and basins, of which 92.5% of the area
is mountains and hills (Fu and Gu 2012).

Through analyzing the relationship between terrain elevation and drought at-
risk populations, the severe drought area (population in drinking water access
difficulties >50,000) was mainly distributed in mountainous and hilly regions in
northern Guizhou Province. People have to get their drinking water from rivers
or wells. The mean height above sea level of these regions is more than 2000 m.
Mountain Fohn Wind further exacerbates the effects of drought. Through analysis,
the number of the drought at-risk populations and terrain elevation were positively
correlated. In addition, hilly areas are far from water sources, making obtaining
water relatively difficult. It also will increase the cost of obtaining water in the hilly
areas.

River system distribution

There is a total of 106.2 billion m3 water in Guizhou Province (including ground-
water resources of 26 billion m3), which ranks sixth in China. Guizhou is a province
that has relatively abundant water resources, but the distributions of population

106 Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015
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Rapid Assessment of Populations with Difficulties in Drinking Water Access

Figure 4. DEM of Guizhou Province (spatial resolution 1 KM).

and water resources are not balanced in Guizhou Province. The midwest and the
northern regions (including Guiyang City, Liupanshui City, Zunyi City, Anshun City,
Autonomous Prefecture of Buyi Nationalities in Southeastern Guizhou, Bijie Pre-
fecture) accounted for 57.7% of the land area and 68.7% of the population, but the
province’s water resources only accounted for 54.7% (Yang 2006). Guizhou Pearl is
located in the watershed area of the Changjiang River water system and the Pearl
River water systems. The terrain topography relief of western Guizhou Province is
higher than that of east, so water complies with the general trend of terrain from west
and central north, to the east and south. With a dense river network, Guizhou has
984 rivers with length >10 km, basin area >20 km2; 167 rivers with river basin area
>300 km2; and 7 rivers with river basin area >1000 km2 (Wu et al. 2005). The river
density of Guizhou Province is 0.71km/km2 and river density of eastern Guizhou is
higher than that of the west (Figure 5).

Through analyzing the relationship between river density and drought at-risk
populations, we found that there were more affected populations with the decrease
of river density. The severe drought area (population in drinking water access diffi-
culties >50,000) were mainly distributed in northwest and northeast areas that have
sparse river density in Guizhou Province.

Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015 107
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H. Jia et al.

Figure 5. River density of Guizhou Province.

Population

The unique mountain plateau and Karst geological conditions lead to an uneven
distribution of population in Guizhou Province. In the plateau regions, the distri-
bution of the population is affected by altitude, landforms, terrain slope, and other
environmental factors. Further, the population distribution of plateaus in Guizhou
Province also has a special characteristic: Population distribution does not decrease
with increasing altitude. A Karst geological condition is the main factor constraining
spatial transfer of population distribution. In the non-Karst areas, population dis-
tribution is influenced by eroded areas, showing a lowland directivity characteristic
(Figure 6).

In recent years with the increase in population density and urbanization devel-
opment, people’s living and production of water gradually increased, coupled with
increased demand for food, and cultivated land returning to grass, led to more
severe drought under the same precipitation.

Roads

Guiyang City, as Guizhou’s provincial capital, is the main railroad junction in
southwest China. Taking Guiyang as the center, Guizhou-Guangxi, Sichuan-Guizhou,

108 Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015
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Rapid Assessment of Populations with Difficulties in Drinking Water Access

Figure 6. Population density of Guizhou Province (2010).

Guiyang-Kunming, and Zhuzhou railways are the four railway lines that run through
Guizhou Province. The total operating mileage is 1468 km.

Highways are one of the most important transportation routes to carrying water
for arid areas in Guizhou Province. With the increase of construction land for
towns, railroads, highways, and reservoirs, some higher ground was used as the
compensation for the original comparatively low-lying land. Accordingly, the soil’s
water-holding capacity is decreased, resulting in a reduced ability of local drought
resistance (Figure 7).

Economic factor

The economic center zone of Guizhou includes Guiyang City, Zunyi City, An-
shun City, Qiandongnan Miao, and Dong Autonomous Prefecture. The regional
economic differences are obvious, counties (cities, districts) of more than 10 bil-
lion yuan of gross domestic product (GDP) in 2010 were distributed in Guiyang
City, Zunyi City, Anshun City, and so on (Figure 8), showing that the undeveloped
counties have less financial resources to solve their drinking water problems.

To promote coordinated regional economic development and utilization of wa-
ter resources, water safety is a precondition. Rational development of rural eco-
nomic development and comprehensive planning should be made to ensure rural

Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015 109
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Figure 7. Road density of Guizhou Province.

drinking water supplies. These actions will promote the development between rural
economies and the sustainable use of water resources.

CONSTRUCTION OF RAPID ASSESSMENT MODEL

Sample Selection and Data Preprocessing of Data

The structure of our BP neural network is shown in Figure 9. It can be seen
from the model’s structure that the model consists of three layers of neurons: an
input layer, a hidden layer, and an output layer. The input layer’s neurons are
the six indicators counted by county in Guizhou Province: the average monthly
precipitation, DEM, river density, population density, road density, and GDP. The
output layer’s neurons are the assessment results of drought at-risk populations.
The number of neurons in the hidden layer is important for the entire network.
So scientifically determining the number of nodes in the hidden layer is extremely
important.

In principle, a three-tier network that has m neurons in the input layer, 2m + 1
neurons in the hidden layer, and n neurons in the output layer can accurately achieve
any given continuous mappings. Therefore, whenever a new neural network model
is created, the hidden layer’s nodes should be confirmed first. According to previous

110 Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015
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Figure 8. GDP of Guizhou Province (2010).

experience (Wen et al. 2003) m can be designed based on the following equation.

m = √
w + n + R(10) (5)

2m ≥ n (6)

where m is the hidden layer’s nodes; n is the input layer’s nodes; w is the output
layer’s nodes; R (10) is a constant between 1 and 10.

Training and Verification of the Rapid Assessment Model

Using the standardized six indexes as the input values of samples in MATLAB soft-
ware, choosing the 50 drought-affected counties for network learning and training,
the model’s parameters were optimized under trial, and the hidden layer’s neurons
were adjusted. The transfer function of a hidden layer was a logarithmic S-type
function (Logsig). The transfer function of an output layer was a linear function
(purelin). The number of nodes in the hidden layer was 13. Deviation from the goal
was 0.01. Network topology was fixed as 6-13-1. In statistics, the mean squared error
(MSE) of an estimator is one of many ways to quantify the difference between values
implied by an estimator and the true values of the quantity being estimated. MSE
measures the average of the squares of the “errors.” When the number of training

Hum. Ecol. Risk Assess. Vol. 21, No. 1, 2015 111
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Figure 9. Three layers of the BP network for drought at-risk populations.

trials reached 12, the network converged, and the MSE was 0.1804 (Figure 10). It
shows that the network’s convergence speed of the model is very fast.

Using the trained neural network to predict the populations in water shortage
for the remaining 74 counties, a linear regression result was obtained. The actual
values and simulated values were both standardized in Figure 11. In general, the
simulated values using the BP neural network method were a little lower than the
actual data. The quality of the BP neural network predictions was assessed using the
normalized root mean square error (N-RMSE) and the coefficient of determination
(R2) (Figure 11). It shows that the BP neural network method can effectively predict
the drought at-risk populations.

DISCUSSION AND CONCLUSION

Presently, the judgment of populations with difficulties accessing drinking water
because of drought in China is mainly based on disaster reporting by local govern-
ment, not a rapid assessment system of the data quality. This article took the 2013
Guizhou extreme summer drought as an example and a rapid assessment model
based on geographical factors was constructed. It provided a scientific base for rapid
assessment of drought at-risk populations and verification of disaster effects. The
model showed that:

1. The selected six input factors of the average monthly precipitation, DEM, river
density, population density, road density, and GDP could be used to reflect the
spatial distribution of drought at-risk populations.
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Figure 10. Serial contrast between actual and simulated drought at-risk popula-
tions.

R² = 0.7736

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

si
m

ul
at

ed
 v

al
ue

s

actual values

Figure 11. Linear fitting results between BP neural network simulated and actual
values.
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2. Under the circumstances of more parameters and unknown weights, using a BP
neural network to construct an assessment model of drought at-risk populations is
feasible. Linear regression results R2 and N-RMSE between simulated and actual
values are 0.7736 and 0.0070, respectively.

3. Taking data availability into consideration primarily, the six input factors were
chosen in this study. There are some other input factors that should be con-
sidered. In a further study, Principal Component Analysis and cluster analysis
should be used to classify variables to determine the representative indicators of
drought at-risk populations.

4. In the next stage, we should increase the sample coverage. The model should
contain main input factors as many as possible that may affect the output re-
sults. Appropriate convergence error should be determined. All can be further
improved for prediction accuracy.

5. The modeled outputs will be used by the government officials to assist population
in need. The assessment results can provide a scientific basis for determining the
regions and how many people should be aided, and then the disaster prepared-
ness and risk relief activities will be carried out. Risk management measures may
be taken by local governments including technology (rainwater harvesting ini-
tiatives), use of strategic groundwater, and water resources development in daily
life.
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