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Abstract—Independent component analysis (ICA) has been re-
cently applied into hyperspectral unmixing as a result of its low
computation time and its ability to perform without prior infor-
mation. However, when applying ICA for hyperspectral unmixing,
the independence assumption in the ICA model conflicts with
the abundance sum-to-one constraint and the abundance nonneg-
ative constraint in the linear mixture model, which affects the
hyperspectral unmixing accuracy. In this paper, we consider an
abundance matrix composed of Np-dimensional variables, and
we propose a new hyperspectral unmixing approach with an abun-
dance characteristic-based ICA model. Two characteristics of the
abundance variables are explored, and the model is constructed by
these characteristics. A corresponding gradient descent algorithm
is also proposed to solve the proposed objective function. Both
the synthetic and real experimental results demonstrate that the
proposed method performs better than the other state-of-the-art
methods in abundance and endmember extraction.

Index Terms—Abundance characteristic, convex geometry, hy-
perspectral unmixing, independent component analysis (ICA),
orthogonal subspace projection.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) captured by image
spectroscopy contain both spatial and spectral informa-

tion [1], [2], which can help the users to better extract the
ground-object information. However, due to the limited spatial
resolution and the complexity of the terrain, a single pixel in
HSI always contains different materials, i.e., “mixed pixels”
always exist in the HSI [3]. These mixed pixels in the HSI are,
in fact, the main obstacle for HSI analysis. To solve the problem
and make full use of the rich spectral information, spectral
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unmixing technologies have been developed in recent years
[4]. These technologies decompose a mixed pixel into a set
of spectra called “endmembers,” as well as the corresponding
abundances. In other words, the classification procedure is
performed at a subpixel scale.

The linear mixture model (LMM) and the nonlinear mixture
model (NLMM) are the two basic models used in hyperspectral
unmixing [5]. For an overview of recent advances in nonlinear
unmixing, see [6]. Compared with the NLMMs, the LMM is
more widely applied due to its simplicity and definite physi-
cal meaning. More research has therefore been based on the
LMM. In this research, four strategies for unmixing have been
developed: 1) algorithms based on simplex geometric theory;
2) sparse regression-based methods; 3) algorithms considering
the spatial–spectral contextual information; and 4) algorithms
based on statistical methods [7]. In simplex geometric theory,
the hyperspectral data set can be considered as a simplex, and
the vertices correspond to the endmembers in the data set.
Many different approaches have been developed to search for
the endmembers, such as the N-FINDR [8], simplex growing
algorithm (SGA) [9], pixel purity index (PPI) [10], vertex
component analysis (VCA) [11], simplex identification via split
augmented Lagrangian (SISAL) [12], and so on. N-FINDR and
SGA search the simplex with the maximum volume and define
the vertices of the simplex as the endmembers, while PPI and
VCA search them by a data set projection analysis. SISAL
finds a simplex embedding the data set through an augmented
Lagrangian method. These approaches mainly focus on the
extraction of endmembers, and the estimation of abundances
requires the conventional nonconstrained or constrained least
squares methods. In recent years, the unmixing problem has
often been considered as a sparse problem, with the assumption
that the observed pixels can be expressed by linear combina-
tions of a number of pure spectral signatures that are known in
advance (a spectral library is used for the known signatures).
Since the number of endmembers in one pixel is very small
compared with the size of the spectral library, sparse theory can
be used for the unmixing [7]. Zare and Gader [13] expanded
the iterated-constrained-endmember algorithm that incorpo-
rates sparsity-promoting priors to find the correct number of
endmembers. Qian et al. [14] extended the nonnegative matrix
factorization (NMF) method by incorporating an L1/2 sparsity
constraint, which induces sparsity in the unmixing procedure.
Charles et al. [15] learned an optimal library under the sparse
representation model and used it to learn the spectral signatures
of the materials in the image. Some researchers have also added
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spatial–spectral information for hyperspectral unmixing. Auto-
mated morphological endmember extraction [16], as proposed
by Plaza et al., is based on mathematical morphology, a classic
image processing technique that can be applied in the spectral
domain of data. Jia and Qian [17] proposed a measure of the
spatial complexity to describe the spatial autocorrelation, and
the estimated abundances vary smoothly from one pixel to its
neighbors. Zare [18] considered a weighted combination of the
abundances related to the neighboring pixels as a regularization
term to make the abundances smooth.

Statistical approaches can show an effective result if there are
no pure pixels in the image, and they can, in general, simultane-
ously obtain endmembers and the corresponding abundances.
Dobigeon et al. [19] proposed a new hierarchical Bayesian
model to generate results fitting the nonnegative and sum-
to-one constraints. Blind source separation (BSS) approaches
have also been used for hyperspectral unmixing and can be
considered to belong to the statistical approaches.

BSS extracts the signals from the observations, without prior
information, and different assumptions about the signal sources
derive the different BSS approaches [20]–[23]. Independent
component analysis (ICA) [24] and NMF [25] are typical statis-
tical approaches. NMF decomposes a high-dimensional data set
into two nonnegative matrices [26]. It does not require a pure-
pixel occurrence assumption and naturally keeps the abundance
nonnegative constraint (ANC) in the LMM. As a result, NMF
has been widely studied in the field of hyperspectral imagery by
many researchers [27]. Many different NMF-based approaches
have been proposed for the spectral unmixing application.
Huck et al. [28] proposed a method called minimum dispersion
constrained NMF, in which the variance of each spectra is
employed to constrain the basic NMF, thereby preserving the
possible spectra. Miao and Qi [29] proposed the minimum
volume constrained NMF (MVCNMF), which introduces a
minimum volume constraint as the “internal force” to make the
estimated simplex circumscribe the data cloud. Jia and Qian
[30] proposed the piecewise smoothness NMF with a sparse-
ness constraint, which imposes both piecewise smoothness and
sparseness constraints on NMF. Liu et al. [31] proposed an
approach named abundance separation and smoothness con-
strained NMF, which introduces two constraints, namely, the
abundance separation constraint and the abundance smoothness
constraint, into the basic NMF. Wang et al. [32] proposed an
endmember dissimilarity constrained NMF, which defines an
endmember dissimilarity function as a constraint to make the
estimated endmember spectra dissimilar and smooth.

ICA is another statistical approach for hyperspectral unmix-
ing. Compared with NMF, ICA has a lower computational cost.
Bayliss et al. [33] applied ICA for hyperspectral unmixing by
considering the endmembers’ spectra as the original sources.
However, because of the limited spectral bands in HSI, there
are insufficient statistical characteristics for hyperspectral un-
mixing with ICA. Therefore, other researchers have considered
the abundance vectors as the original sources [34]–[36]. Unfor-
tunately, the independence assumption in ICA contradicts the
abundance sum-to-one constraint (ASC) in LMM [34], which
affects the performance of ICA. A solution to this problem
was recently proposed through the combination of ICA and

Bayesian positive source separation [37], which estimates the
more meaningful spectral signals. However, the abundances are
not estimated simultaneously with the endmember extraction,
which may cause a large error between the real abundances
and the estimated abundances. Another method is dependent
component analysis [38], [39], which assumes that the abun-
dances have a Dirichlet distribution. A result which satisfies
both the ASC and ANC can be obtained under this approach.
Wei et al. [40] also proposed a constrained ICA (CICA) model
for hyperspectral unmixing, which adds the ASC and ANC into
the ICA model, and they proposed an adaptive abundance mod-
eling technology to characterize the statistical distribution of
the data. The CICA model changes the independence assump-
tion in the ICA model so that it is suitable for hyperspectral
unmixing. The model is constructed from a mathematical point
of view, which will lead to less meaningful results.

By considering the abundance matrix as a p-dimensional
variable with N samples, we propose an abundance
characteristic-based ICA (ACICA) model for hyperspectral
unmixing. Based on the LMM, the abundance variables must
be included in the specific convex. Moreover, each ground
objective has its own distribution range, which means that the
abundance variables should be less independent. According to
the two characteristics, we construct the new model from three
considerations.

1) We follow the idea of ICA based on geodesic search to
keep the data set nonnegative.

2) We apply orthogonal subspace projection theory to for-
mulate an abundance sum-to-one function, and we com-
bine it with ICA based on geodesic search to ensure that
the data set is included in the specific convex.

3) We add the mutual information as a regularization item
to control the degree of independence of the abundance
variables.

Compared with most of the state-of-the-art algorithms based
on NMF and ICA, the proposed approach can be implemented
without the elaborate selection of a proper initialization, which
avoids the problem of the results not being accurate without
proper initial values. Experiments with both synthetic and real
data sets also confirm the advantages of the proposed method.

The remainder of this paper is organized as follows.
Section II briefly presents the LMM and ICA based on geodesic
search. Section III details the proposed method. The experi-
ments with synthetic and real hyperspectral data are described
in Sections IV and V, respectively. Section VI concludes this
paper.

II. RELATED WORKS

A. LMM

The LMM assumes that a pixel in a hyperspectral data set
is a linear mixture of P known material signatures called
endmembers, Aband×P =[a1, a2, . . . , aP ], where ai is the end-
member spectra with dimension band. The corresponding pro-
portion is called the abundance SP×N = [s1, s2, . . . , sP ]

T =
[ω1, ω2, . . . , ωN ], where si is a N -dimension vector. N is the
number of image pixels, and P is the number of endmembers.
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Fig. 1. Illustration of ICA based on geodesic search. The blue points are the
whitened data set without mean removal, and the black arrowheads refer to the
corresponding coordination system. The red arrows are the rotated coordination
system computed by ICA based on geodesic search.

Based on the LMM, each pixel in a HSI data set can be
expressed as

x = Aγω + ε (1)

where x is a band× 1 vector representing one pixel in the
HSI, γ is a scale factor modeling the illumination variability
due to the surface topography [8], and ε is the residual error.
According to LMM, the abundance matrix should satisfy the
ASC and ANC simultaneously, i.e., sT1 + sT2 + · · ·+ sTp = 1T

and sTi ≥ 0.

B. ICA-Based Geodesic Search

ICA can extract independent sources from the mixed ob-
servations, with the assumption that the sources are statis-
tically independent from each other. The basic ICA model
can be referred to as (1), where s = [s1, s2, . . . , sp]

T are
the original sources and are independent of each other, x =
[x1, x2, . . . , xN ]T are the observations, and A is the mixing
matrix. To find the independent components in the observations,
an orthogonal matrix W is searched to make y = Wx = s,
where it is assumed that there is no noise. As we know, the
original sources s are independent of each other, which means
that the mutual information between them is zero. Therefore,
minimizing the mutual information between y = Wx can help
for searching the matrix W and generating the estimated sig-
nals. The nonnegative property is common in the real world,
but the traditional ICA model cannot achieve this nonnegative
constraint. Plumbley [41] proposed ICA based on geodesic
search to solve this problem. In the algorithm, it searches an
orthogonal and rotational matrix W such that Y = WZ is
nonnegative, where Y denotes the estimated signals and Z is
the whitened matrix from the original data set X . Fig. 1 shows
an illustration of ICA based on geodesic search.

Fig. 2. Specific convex including the abundance variables.

To make the estimated signals nonnegative, the objective
function is constructed as follows:

min J =
1

2
trace

(
Y−Y

T
−
)

(3)

where Y− = min(Y, 0) is the negative part of the matrix Y .
To find the minimum of the objective function over the matrix
W , which is constrained to be orthonormal, a Stiefel manifold
[42] is used. The distance between two points on the Stiefel
manifold, which is named “geodesic,” is defined as

W (τ) = eτBW (0) (4)

where B is a skew-symmetric matrix and τ is a scalar parameter
determining the position along the geodesic. Based on the
Stiefel manifold, a steepest descent geodesic algorithm was
developed by the authors, which can directly keep the matrix
W orthonormal in each iteration. However, this steepest de-
scent geodesic algorithm only searches the orthonormal matrix,
which may not generate a steady and satisfactory result for
hyperspectral unmixing. The details of this algorithm can be
found in [41, Sec. V].

III. PROPOSED METHOD

This section proposes a new model for hyperspectral unmix-
ing. The motivation behind the improved objective function is
from two aspects.

1) According to the abundance constraints in LMM, the
sample abundance variables should constitute a specific
convex, which is

conv{e1, . . . ep} =

{
s =

p∑
i=1

θiei

∣∣∣∣∣θ ∈ Rp
+, 1T

p θ = 1

}

(5)

in which I = [e1, . . . ep] is a p× p identity matrix.
Fig. 2 shows the specific convex constructed by the

abundance variables. However, only satisfying these con-
straints will not correctly extract the abundances due to
the fact that many abundance pairs can fit the constraints.
Therefore, the other characteristic needs to be explored to
avoid this problem.

2) In the real world, each ground object has a smooth dis-
tribution in the scene; therefore, the abundance variables
corresponding to the different ground objects have a
dispersed distribution. Fig. 3 illustrates the distribution of
the abundance variables in the 2-D convex. We can see
that the abundance variables are included and dispersed
in a convex, which shows that they are correlated, i.e.,
not completely independent.
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Fig. 3. Distribution of the abundance variables in the 2-D specific convex.

Above all, we can extract the variables with less indepen-
dence in the specific convex as the abundance maps. The new
objective function is proposed as follows:

min F (W ) = G1+G2+μG3, where G1 =
1

2
trace

(
Y−Y

T
−
)
.

(6)

In (6), function G1 is the ICA model. We add functions G2
and G3 to achieve the aforementioned two motivations, where
minimizing function G1 +G2 can keep the estimated data in
the specific convex and minimizing function G3 can make the
estimated data less independent. μ is the regularization parame-
ter, which controls the intensity of the degree of independence.
G2 is an ASC function constructed by orthogonal subspace
theory [48], and G3 is a mutual information function measured
by the degree of the independence of the abundance variables.
The details of the objective function are as follows.

A. ASC Function

According to the LMM, the ASC can be seen as an affine set

affine{e1, . . . , ep} =

{
s =

p∑
i=1

θiei,1
T
p θ = 1

}
(7)

where [e1, . . . ep] = Ip×p, Ip×p is the identity matrix. The affine
set can also be presented as follows [43]:

affine{e1, . . . ep} = {s = Cα+ d|α ∈ Rp−1} = Λ(C,d).
(8)

Due to {e1, . . . ep} being affinely independent, we can get
the matrix

C = [e1 − ep, . . . , ep−1 − ep]L×(p−1) (9)
d = ep. (10)

According to (8), the vector s included in the affine set can
satisfy the following equation:

s− d = Cα. (11)

Therefore, we can measure the distance from a vector to the
affine set by projecting the vector to the orthogonal subspace
of matrix C. The distance function of the estimated abundance
vector y can be defined as follows:

g =(y − d)TC⊥(y − d) (12)

C⊥ = I − C(CTC)
−1
CT (13)

where yp×1 is a column vector in the abundance matrix Y and
C⊥ is the orthogonal subspace of matrix C. Under (12), if the
abundance vector is included in the affine set, the function value

g is zero; otherwise, the function value is a nonnegative value
since the matrix C⊥ is a nonnegative-definite matrix. Therefore,
for all the vectors, we can define the whole distance function
G2 as

G2 =
1

N

N∑
i=1

(yi − d)TC⊥(yi − d) (14)

where yi is any column vector in the abundance matrix Y .
Equation (14) can also be presented in a matrix style as follows:

G2 =
1

N
trace

[
(Y −D)C⊥(Y −D)T

]
(15)

where matrix D is written as

D =

⎡
⎢⎢⎣
0, . . . , 0
..., . . . ,

...
0, . . . , 0
1, . . . , 1

⎤
⎥⎥⎦
p×N

. (16)

For (15), the greater the number of vectors that fall into the
affine set, the closer the function is to zero. Therefore, through
minimizing (15), the ASC can be satisfied for hyperspectral
unmixing.

B. Mutual Information Function

Mutual information is usually used to measure the degree of
independence between signals. The mutual information func-
tion is defined as follows:

MI = DKL

(
p(y)

∥∥∥∥∥
p∏

i=1

p(yi)

)
(17)

where y = [y1, y2, . . . yp] is a random vector, p(y) is the joint
probability density, and p(yi) is the probability density of yi.
According to (17), the mutual information is used to measure
the independence between the random variables. The range
value of the MI function is [0,+∞], and when the value is
zero, the variables are independent. For MI > 0, the variables
have a limited degree of correlation. In practice, the abun-
dance variables are usually dispersed in a convex, and they
also present a low independence. Therefore, the independence
degree between the abundance variables can be well described
by the mutual information. In this paper, when minimizing the
objective function, we can adjust the parameter to control the
mutual information to be a proper value fitting the degree of
dispersion. Therefore, the dispersed property of the abundance
variables can be satisfied.

Due to the fact that the distribution of the signals is usually
unknown in advance, the mutual information needs to be esti-
mated. One of the methods is to use the cumulant of the signals.
The estimation formula used in this paper is presented in detail
in Section III-C.

C. Proposed ACICA

In this section, more details of the ACICA model are pre-
sented, and the corresponding update rules and the stopping
conditions are also developed.
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Combining (6), (15), and (17), the objective function is as
follows:

min F (W ) =
1

2
trace

(
Y−Y

T
−
)

+
1

N
trace

[
(Y −D)C⊥(Y −D)T

]
+ μDKL

(
p(y)

∥∥∥∥∥
p∏

i=1

p(yi)

)

(18)

where Y = WZ. ZP×N is the dimensionally reduced matrix
from the original data set X , and it can be found in (28) (see
Section III-D).

In (18), the first term on the right can constrain the estimated
variables to be nonnegative, and the second term can constrain
the estimated variables to be included in a specific convex.
Minimizing the first and second terms, we can constrain the
estimated variables in the convex in which the real abundance
variables are found. As mentioned earlier, variables included
in the specific convex are not unique; therefore, the third
term in (18) is necessary. By minimizing the third term, the
estimated variables are separated from each other, which fits the
real distribution of the abundance maps. Additionally, through
changing the parameter μ, we can control the degree of the
independence to improve the final accuracy.

To optimize (18), we choose the gradient descent algorithm

W ← W − λΔW (19)

where ΔW = ∂F (W )/∂W and λ is the step size. We calculate
the gradient ΔW as follows.

1) The gradient of the first item is

ΔW1 =
∂G1(W )

∂W
= Y−Z

T . (20)

2) The gradient of the second item is

ΔW2 =
∂G2(W )

∂W
=

2

N
C⊥(Y −D)ZT . (21)

In the third term of (18), because we do not know the
real probability density function (pdf) of the abundance dis-
tributions, the pdf of the abundance distributions needs to be
estimated. Several studies [49], [50] have provided possible
ways to estimate the pdf . One way is that the pdf can be
expressed by a series expansion with respect to a Gaussian
distribution. Therefore, the estimation is more accurate when
the estimated pdf is close to a Gaussian distribution. According
to Amari et al. [20], the gradient of the third term can be defined
as follows:

ΔW3 =
∂G3(W )

∂W
=

(
QZT − (WT )−1 ∗N

)
/N (22)

where

Q =(f ∗ 1). ∗ (Y. ∧2) + (g ∗ 1). ∗ (Y. ∧3) (23)

f = − 3

48
(8k3./σ

3 − 12k3. ∗ k4./σ7)

g = − 4

48
(2k4./σ

4 − 9k24./σ
8 − 6 ∗ k23./σ6). (24)

In (23) and (24), the symbols “./” and “.∗” represent dot
division and dot multiplication, respectively. “.∧” represents
the power computing of each element in the matrix, and “∗”
represents the multiplication computing. k3 and k4 are the third-
and fourth-order cumulants, and σ is the variance of the variable
in matrix Y , which is updated at every iteration.

Combining (20)–(22), the gradient of the objective function
can be written as

ΔW =Y−Z
T +

2

N
C⊥(Y−D)ZT+μ

(
QZT−(WT )−1∗N

)
/N.

(25)

The stopping condition of this algorithm is that the distance
between the new and the old objective function value is smaller
than a threshold ρ

|F k−1 − F k| < ρ (26)

where k − 1 and k are the previous and current iterations,
relatively. We can then optimize the objective function by (19)
and (25), and the estimated abundance matrix Y can finally
be obtained. We can calculate the endmember matrix A by the
nonnegative least squares algorithm.

D. Data Preprocessing—DR

Before performing the proposed method, the number of
endmembers needs to be estimated if there is no prior infor-
mation. Eches et al. [51] provided an algorithm to estimate the
number of endmembers. Our method also needs dimensionality
reduction (DR) to make matrix W square. Some researchers
have, in fact, proposed DR algorithms [52]–[55] for HSIs. In the
traditional ICA, whitening is an important step before the ICA
iteration procedure. This is because it can do half of the work
of ICA, removing any second-order dependences in the data
set. However, for hyperspectral unmixing, the whitening step
should be modified in two aspects: 1) The abundance variables
are always nonnegative, so to ensure that most of the estimated
abundance values are also nonnegative, we do not remove the
mean of the original data set X; and 2) the abundance variables
are always correlated with each other. Therefore, we whiten the
original data set with matrix

∑
, as defined in (27), to keep

the variables correlated. The whitening step in this paper is as
follows.

First, define the matrix of the original data set∑
= XXT /N (27)

where N is the number of pixels.
Second, calculate the eigenvalue matrix D and eigenvector

matrix E of the matrix
∑

, and reduce the dimension of the
original data set to p dimensions with

Z =
(
D−1/2

p ET
p

)
X (28)

where Dp is a diagonal matrix with the first p eigenvalues in the
diagonal line and Ep is the corresponding vectors.

After the DR, ACICA can be performed to optimize the
objective function. Additionally, compared with many of the
statistical algorithms based on NMF or ICA, the proposed
method in this paper does not need a proper initialization.
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E. Procedure of ACICA

The flowchart of ACICA is as follows:

Input:
Data information: original hyperspectral data set X and the

number of endmembers P .
Parameter: the regularization parameter μ and the step size

λ in the gradient descent algorithm, and the threshold ε.
Begin:
Undertake the dimension reduction by (27) and (28);
Set the matrix W as the identity matrix.
for k=1: maximum iteration
update the matrix W by (19) and (25) until satisfying (26)
end
Calculate the endmember matrix A based on the original data

set X and the estimated abundance matrix Y by constrained
least squares minimization.

End

IV. SYNTHETIC DATA SET EXPERIMENT

In this section, ACICA is evaluated by the use of synthetic
data. Several classical hyperspectral unmixing methods are
used for the comparison, including the CICA [40], MVC-
NMF [29], SISAL [12], and VCA with fully constrained least
squares [11].

The two criteria of the spectral angle distance (SAD) [5]
and root-mean-square error (RMSE) [44] are used to evaluate
the unmixing results. These two criteria measure the similarity
between the estimated results and the reference values. SAD is
defined as

SAD = cos−1 aTi · âi∣∣aTi ∣∣ |âi| (29)

where ai is an estimated endmember signature and âi is the
corresponding reference signature.

RMSE measures the similarity between the estimated abun-
dance and the corresponding reference abundance, which is
defined as

RMSE =

√√√√ 1

N

N∑
j=1

(sj − ŝj)2 (30)

where sj is the estimated abundance and ŝj is the corresponding
reference abundance.

The spectral signatures in the synthetic data are chosen from
the United States Geological Survey (USGS) digital spectral
library. Fig. 4 shows these five endmember signatures and their
names. The generation of abundances is similar to the method
in [11], with the abundance fractions being randomly generated
based on the Dirichlet distribution given by

p(α1, α2, . . . αp) =
Γ(ψ1 + ψ2 + · · ·+ ψp)

Γ(ψ1)Γ(ψ2) . . .Γ(ψp)

× αψ1−1
1 αψ2−1

2 . . . α
ψp−1
p (31)

Fig. 4. Endmember spectra of the synthetic data.

where 0 < αi < 1,
∑p

i αi = 1, E(αi) = ψi

∑p
k ψk is the ex-

pected value of the ith abundance fraction, and Γ(ψi) is the
Gamma function, whose value is decided by ψi. In the synthetic
experiments, the parameter γ controlling the illumination vari-
ability follows a Beta(β1, β2) distribution. β2 is fixed as 1, and
β1 is used for changing parameter γ. We employ the parameter
η to denote the maximum value of the abundance fractions in
the data set. The noise in the synthetic data is Gaussian noise,
while the SNR is defined as

SNR = 10 log10
E[rT r]

E[εT ε]
(32)

where r denotes the signal information without noise, E[rT r]
denotes the signal intensity, and E[εT ε] denotes the noise
intensity.

Extensive experiments on the simulated data set are con-
ducted to evaluate the effectiveness of ACICA from five im-
portant aspects: 1) In the first experiment, the algorithms are
evaluated with varying SNR to analyze the robustness with
regard to different levels of noise; 2) in the second experiment,
the parameter β1, which controls the degree of illumination
due to the surface topography, is used to evaluate the algo-
rithms; 3) in the third experiment, the algorithms are evaluated
with regard to the absence of pure pixels. The parameter η
denotes the maximum value of abundance fractions in the data
set. If a pure pixel exists, η equals 1, and η will decrease
with the absence of pure pixels; 4) in the fourth experi-
ment, the number of endmembers P is varied in the scene
in order to evaluate the algorithm performance under differ-
ent numbers of land objects; and 5) in the final experiment,
the algorithms are evaluated by different numbers of pixels
N in the HSI data set, corresponding to different scales of
data set.

Additionally, at the close of this section, we also analyze the
effect of the regularization item, the convergence of the objec-
tive function under our optimization algorithm, the calculation
complexity, and the effect of the parameters.

A. Experiment A (Noise Robustness Analysis)

In this experiment, the SNR changes from 10 to 30 dB. The
hyperspectral scene has 1296 pixels and 5 endmembers. Param-
eter γ is Beta distributed with β1 = 10 and β2 = 1. Parameter
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Fig. 5. Experimental results with different SNR. (a) RMSE. (b) SAD.

Fig. 6. Experimental results with different values of the degree of illumina-
tion. (a) RMSE. (b) SAD.

η is fixed as 1. Fig. 5(a) and (b) presents the mean values of
RMSE and SAD for all abundances and endmembers, respec-
tively, and the unit for the SAD angle is radiance. In terms
of RMSE, the proposed ACICA gives the best performance at
15–30 dB, while vertex component analysis + full constrained
least square (VCA+FCLS) gives the second-best performance.
The performance of MVCNMF deteriorates rapidly with the
decrease in SNR. SISAL also gives a good performance, while
CICA could not give a satisfactory performance in these terms.
In terms of SAM, ACICA gives the best performance at 10–
25 dB, followed by CICA, VCA, MVCNMF, and SISAL.
Overall, the proposed method performs best with the varying
levels of noise.

B. Experiment B (Degree of Illumination Robustness Analysis)

Due to fluctuations in surface topography, the degree of
illumination is different for different images. In this experiment,
parameter γ distributed with Beta(β1, β2) is used to describe
the illumination cases, and β1 and β2 are used to change the
parameter γ. In the experiment, the range of β1 is 2–26, β2 = 1,
and the quality of the data sets decreases as β1 decreases.
The size of the abundance map N is 1296, the number of
endmembers P is 5, and the SNR is fixed to 30 dB in these data
sets. Fig. 6(a) and (b) illustrates the average values of RMSE
and SAD, respectively. In terms of the RMSE values, ACICA
gives the best performance. VCA+FCLS, SISAL, and MVC-
NMF also perform well at β > 10. In terms of SAD, ACICA
also gives a stable and satisfactory performance. VCA+FCLS,
MVCNMF, and CICA also perform well, but SISAL does not
perform very well in this experiment. It is concluded that the
proposed method is robust with regard to the variation in the
degree of illumination.

Fig. 7. Experimental results with different degrees of mixing. (a) RMSE.
(b) SAD.

Fig. 8. Experimental results with different numbers of endmembers. (a) SAD.
(b) RMSE.

Fig. 9. Experimental results with different number of pixels. (a) RMSE.
(b) SAD.

C. Experiment C (Robustness Analysis to Degree of Mixing)

In this experiment, the parameter η controlling the degree
of mixing is changed from 0.6 to 1. The number of pixels in
the scene is 1296, and the number of endmembers is 5. The
parameter γ is decided by β1 = 10 and β2 = 1, and the SNR
is fixed as 20 dB. The average values of RMSE and SAD are
plotted in Fig. 7(a) and (b). The SAD and RMSE values show
that ACICA performs best. In terms of RMSE, MVCNMF also
performs well, followed by VCA+FCLS, SISAL, and CICA. In
terms of SAD, VCA+FCLS has the second-best performance,
followed by CICA and MVCNMF. From Fig. 7, we can see that
no matter whether pure pixels exist or not, ACICA performs
the best.

D. Experiment D (Robustness Analysis to the Number
of Endmembers)

In this experiment, the number of endmembers is changed
from 2 to 8 in the scene, and the number of pixels is fixed
at 1296. The parameter γ is decided by β1 = 10 and β2 = 1,
the SNR is fixed as 20 dB, and the parameter η is fixed as 1.
Fig. 8(a) and (b) plots the average values of RMSE and SAD.
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Fig. 10. Values in the objective function with the first 200 iterations. (a) Value of the first item plus second item in the objective function. (b) Mutual information
value (third item in the objective function). (c) Value of the objective function.

Fig. 11. Effectiveness test for the removal of ACICA. (a) Results with
different SNR. (b) Results under different purity levels. (c) Results under
different numbers of endmembers.

From the values of RMSE, it can be seen that ACICA performs
best, and VCA+FCLS performs better with large numbers
of endmembers. MVCNMF also performs well, followed by
SISAL and CICA. In terms of SAD, ACICA gives the best
performance in most cases, but with high numbers of endmem-
bers, and CICA and VCA+FCLS perform better than ACICA
and MVCNMF in terms of SAD. SISAL performs well at low
numbers of endmembers. The aforementioned observations are
proof that the proposed method achieves the best performance
in abundance estimation with complex distributions of ground
objects, and the method also presents an acceptable perfor-
mance in endmember extraction.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS

E. Experiment E (Robustness Analysis to the Number
of Pixels)

In this experiment, the number of pixels is changed from 100
to 10 000 in the scene, and the number of endmembers is fixed
as 6. The parameter γ is decided by β1 = 10 and β2 = 1, the
SNR is fixed as 20 dB, the number of endmembers P = 6,
and parameter η is fixed as 1. The average values of SAD and
RMSE are plotted in Fig. 9(a) and (b). Both the SAD values and
RMSE values show that ACICA achieves the best performance
among all the methods. In terms of RMSE, VCA+FCLS has the
second-best performance, followed by MVCNMF, CICA, and
SISAL. For the SAD values, CICA has the second-best per-
formance, followed by VCA+FCLS, MVCNMF, and SISAL.
We therefore conclude that the proposed method is suitable for
different sizes of hyperspectral data set.

F. Convergence Analysis, Regularization Item Analysis,
Calculation Complexity, and Parameter Analysis

The convergence results under our update rules are shown in
Fig. 10. Fig. 10(a) shows the value of the first two items in the
objective function G1 +G2, which means the degree of the es-
timated abundance vectors included in the specific convex. We
can see that, with the growth in the iterations, the value is close
to zero, which shows that most of the estimated abundance
vectors are included in the convex. Fig. 10(b) shows the value
of the mutual information G3 in the objective function, which
shows the degree of independence between the variables. We
can see that, after the preprocessing, the abundance variables
show a low mutual information value, but the value is stable
with the growth of the iterations and it is greater than 0,
which shows that the estimated abundance variables are not
completely independent. From Fig. 10(a) and (b), we can see
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Fig. 12. Parameter analysis.

Fig. 13. (a) Subscene extracted from the Cuprite data set. (b) Nevada Cuprite reference map by the USGS, 1995.

that, under our update rule, the characteristics can be satisfied
well. Fig. 10(c) shows the change in the objective function
values with the iterations, and we can see that they converge
with the iterations.

We also test the effectiveness of the mutual information item
in the objective function. We remove the mutual information
regularization item from the ACICA model (we refer to it as
rACICA) to evaluate its effect on ACICA. Fig. 11 shows the
experimental results under several different cases. From the
experimental results, we can see that, without the regulariza-
tion item, the algorithm shows a poor accuracy, which proves
that applying the dispersed characteristic of the abundances is
important to improve the accuracy.

The computational complexity of the algorithms is shown
in Table I. From the table, we can see that MVCNMF has the
highest computational complexity, while VCA has the lowest.
ACICA has an average computational complexity.

We now analyze the effect of the parameters. There are
three parameters in the paper: μ which controls the mutual
information in the objective function, λ which is the step size of
the gradient descent, and ε which is the criterion of the conver-
gence. In the experiments, it was found that the algorithm can
converge well, and ε is fixed at 0.0001 in all the experiments;
therefore, we only discuss μ and λ here. We select a typical

TABLE II
SPECTRAL ANGLE BETWEEN ESTIMATED ENDMEMBERS AND

REFERENCE ENDMEMBERS IN THE CUPRITE DATA SET

synthetic data set to analyze the parameters: P = 5, N = 1296,
β1 = 10, β2 = 1, SNR = 20 dB, and purity = 0.8. We change
parameter μ ∈ [5× 10−4, 1× 10−2] with λ ∈ [0.05, 0.8] and
plot the SAD and RMSE values, considering λ as the x co-
ordinate as Fig. 12.

We can see that, when we fix parameter μ, the SAD and
RMSE values are basically stable, with λ falling in the range
[0.05,0.8]. This shows that, when the selection of λ falls in this
interval, the parameter will not affect the accuracy. However,
if λ is set too large, the iterations will diverge. λ is set as
0.5 in most of the experiments. Only for the Hyperspectral
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Fig. 14. Abundance maps of ACICA in the Cuprite data set. (a) Buddingtonite. (b) Muscovite. (c) Alunite. (d) Chalcedony. (e) Kaolin. (f) Montmorillonite#1.
(g) Dumortierite. (h) Montmorillonite#2. (i) Desert varnish.

Fig. 15. Subscene extracted from the urban data set.

Digital Imagery Collection Experiment (HYDICE) data set will
0.5 lead to divergence; therefore, λ is set as 0.08 to keep the
convergence. If we constrain SAD as < 0.05 and RMSE as <
0.09, we can see that μ should be set in the range [0.001,0.006].

TABLE III
SPECTRAL ANGLE BETWEEN ESTIMATED ENDMEMBERS AND

REFERENCE ENDMEMBERS IN THE URBAN DATA SET

From the parameter analysis, μ is important for the accuracy. In
most of the experiments, we set μ as 0.003. Only for the data
sets with a very poor quality should μ be set to be larger to lead
to a better accuracy. The reason for this is that, for a normal data
set with a certain correlation t among the abundances, a fixed
value of μ can extract the abundances accurately. However, if
the quality of the data set is very poor, e.g., the SNR is very low,
under a fixed value of parameter μ, the estimated abundances
will include much noise, and in fact, the correlation among the
abundances cannot reach t. Therefore, we should set a larger μ
to overcome the effect of the poor-quality data set.
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Fig. 16. Abundance maps of ACICA in the urban data set: (a) roof#1, (b) grass, (c) roof#2, (d) tree, and (e) street.

V. EXPERIMENTAL RESULTS AND ANALYSIS

ON REAL HYPERSPECTRAL DATA

A. AVIRIS Data Set

In this section, two real hyperspectral data sets are used to
evaluate the algorithms. The first data set was captured by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in
June 1997, covering Cuprite in the state of Nevada, USA. There
are 224 bands in the data set, covering the wavelength range of
0.37–2.48 μm. The spectral resolution is 10 nm. Swayze and
Clark have reported on the ground truth of the area [46], [47].
The USGS mineral spectral library contains the main mineral
spectra in the area and is used for the reference endmember
signatures [11]. For our experiment, a block with the size of
200 × 190 is cut from the original data. The false-color image
and the corresponding reference map captured by the USGS in
1995 are shown in Fig. 13(a) and (b), respectively.

Before unmixing, the noisy bands (1–3 and 221–224) and
water absorption bands (104–115 and 148–170) are removed,
leaving 182 bands. The number of the endmembers is computed
as 9, according to the virtual dimension method [45]. The SAD
values between the reference endmembers and the estimated
endmembers by the different methods are shown in Table II,
while the average for these methods’ performances is also
shown in the last line. The best performance is denoted by a
bold font. In the results, montmorillonite is divided into two
endmembers due to the signature variability. From the SAD

values in Table II, ACICA and CICA have the largest number
of best performance cases; therefore, the average values are
calculated for the evaluation. We can see that the proposed
algorithm has the lowest average value, while CICA also per-
forms better than VCA+FCLS, MVCNMF, and SISAL. The
abundance maps with ACICA are shown in Fig. 14.

B. HYDICE Data Set

The second hyperspectral data set, covering an urban area,
was collected by the HYDICE sensor, which has 210 spectral
channels, with a spectral resolution of 10 nm, ranging between
0.4–2.4 μm. A highly mixed area is cut from the original data
set in this experiment, with the size of 200 × 150. Fig. 15 shows
the true-color image composed of R-band 1, G-band 89, and
B-band 162.

The subscene includes five types of ground objects: two types
of roof, tree, grass, and street. Five pixels are selected manually,
corresponding to the five ground objects, and serve as the refer-
ence endmembers. The SAD values between the reference end-
members and the estimated endmembers by the different meth-
ods are shown in Table III. The best performance is denoted by
a bold font. In the results, roof is divided into two endmembers,
due to the different materials. From the SAD values in Table III,
ACICA has the largest number of best performance cases in
the five classes. It cannot perform best in the class “Roof,”
which may be because roof has a high spectral variability while
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our method has no initialization. CICA also gives a better per-
formance in endmember extraction than VCA+FCLS, MVC-
NMF, and SISAL, and CICA has the best average value. The
abundance maps with ACICA are shown in Fig. 16.

VI. CONCLUSION

This paper proposes a new approach for hyperspectral un-
mixing. Two characteristics of the abundance variables are
explored: 1) Based on the LMM, the abundance variables
must be included in the specific convex, and 2) the abundance
variables are dispersed, i.e., less independent. To satisfy the first
characteristic, this paper applies orthogonal subspace projec-
tion theory to formulate an abundance sum-to-one function and
combines it with the idea of ICA based on geodesic search to
ensure that the data set is included in the specific convex. To
satisfy the second characteristic, we add the mutual information
as a regularization item to control the degree of independence
of the abundance variables. We also develop a corresponding
gradient descent algorithm to solve the proposed objective
function. The proposed method can also perform well without
initialization, which avoids the problem of the results being
incorrect without a proper initialization.

The proposed ACICA is evaluated with several classi-
cal hyperspectral unmixing methods: CICA, MVCNMF, and
VCA+FCLS, for both synthetic and real hyperspectral data
sets. The synthetic experiment results show that the proposed
method performs the best in the abundance extraction, and
it also perform the best, in most cases, for the endmember
extraction. For the real hyperspectral data set results, we can
see that the estimated abundance maps are clear and accurate,
while the proposed method also has the most best performance
cases, which proves that the proposed method is effective for
hyperspectral unmixing.
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