
Hyperspectral Imagery Denoising Based on Oblique
Subspace Projection

Qian Wang, Lifu Zhang, Member, IEEE, Qingxi Tong, and Feizhou Zhang

Abstract—This paper presents a hyperspectral imagerydenoising
algorithm based on oblique subspace projection (DOBSP), which
considers the correlation between noise and signal. The algorithm
first estimates the signal and noise through segmentation Gaussian
filtering which can reduce more influence of the image texture than
traditional Gaussian filtering. Then, signal and noise estimates are
fed into principal component analysis (PCA) to identify their
respective subspace basis vectors. Finally, these basis vectors are
used to compute matrices of oblique subspace projection (OBSP),
and the signal and noise are extracted from the original image
through OBSP. We assessed the DOBSP algorithm using both
simulated and real Hyperion images. The orthogonal subspace
projection (OSP) which assumes that noise is independent on signal
and the subspace-based striping noise reduction (SBSR) algorithm
which uses polynomial model to describe the relationship between
noise and signal were introduced for comparison. Compared with
signal and noise results by OSP and SBSR, both signal and noise
extracted by DOBSP on the simulated image are closer to the
original simulated signal and noise, and the noise image obtained
by DOBSP on the Hyperion image has fewer textures.

Index Terms—Denoising, hyperspectral image, oblique subspace
projection (OBSP), orthogonal subspace projection (OSP).

I. INTRODUCTION

H YPERSPECTRAL imaging is a key technique for ob-
serving the Earth through traditional two-dimensional

imaging remote sensing technology and spectroscopy [1]–[3]. It
simultaneously obtains geo- and radiometric information as well
as abundant spectral information [4]. However, this useful
information is often contaminated by the noise, crippling its
application. Hence, denoising is an important part of hyperspec-
tral image processing [5]–[10].

The noise of hyperspectral images is present in both time and
spatial domains [11]. The time-domain noise is related to each

pixel of the detector. As a common example of time-domain
noise, shot noise is introduced by light current from target and
nontarget radiation, and by dark current. The relation between
shot noise and target radiation demonstrates that shot noise is
partly correlatedwith the signal in an image. Different from time-
domain noise, spatial-domain noise is caused by the use of
multielement and focal plane detectors. For a hyperspectral
image, its spatial-domain noise, which is usually manifested as
striping noise, can be introduced by nonuniformity in the detector
response. This type of noise is modeled as the multiplication of
the detector’s nonuniformity parameter and the image’s average
value [11]. The image’s average value ismainly dependent on the
signal. Thus the striping noise relates to the signal. From the
above analysis about the noise’s generation mechanism, both
time-domain and spatial-domain noises of the hyperspectral
image are related to its signal. Hence, the noise subspace is not
necessarily orthogonal to the signal subspace. Methods based on
orthogonal subspace projection (OSP) [12]–[15] such as princi-
pal component analysis (PCA) [16]–[22] and minimum noise
fraction (MNF) [23]–[25], which omit the correlation between
the noise and signal, are not accurate. In addition, the hyper-
spectral signal from adjacent bands is highly relevant, and the
noise is related to the signal in each band according to the noise’s
generation mechanism. Hence, the relevance may exist in the
noise from adjacent bands, and the covariancematrix of the noise
data may not be diagonal. Therefore, the correlation between the
noise and signal should be taken into account in the denoising
procedure.

The dependence of noise on signal has been taken into
consideration in some recent studies. Selva et al. [26], [27]
presented a generalized signal-dependent noise (GSD) model
that relies on the multivariate regression of local sample statistics
such as mean and variance. It can only obtain the variance of the
noise, not the whole noise image. The GSD model assumes that
the noise is composed of GSD regarded as a regression function
of the noise-free image, and electronics noise independent of the
signal. Actually, the electronic noise is not always independent
of the signal due to the time-domain noise’s generation reason.
Acito et al. [28], [29] thought the striping noise is dependent on
the signal and proposed the subspace-based striping noise re-
duction (SBSR) algorithm to reduce the striping noise and time-
domain noise in the hyperspectral image. The relationship
between the noise and signal ismodeled as a polynomial function
of the signal level. But the order of the polynomial is empirical
and not unique. Moreover, the noise is estimated based on the
assumption that the noise subspace is orthogonal to the signal
subspace in SBSR. For the original image , denotes the
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projection matrix on the signal subspace, and is the
projection matrix on the orthogonal complement of the signal
subspace. In SBSR algorithm, the signal and noise are estimated
respectively by OSP as

and

Thus the noise estimate is uncorrelated with the signal esti-
mate. The noise at the th column th line of the
th band is related to the signal at the corresponding
location

The polynomial coefficients

where indicates the order of the polynomial. In essence, both
the GSD model and SBSR model belong to the polynomial
model. Although the polynomial model considers dependence of
noise on signal, it is empirical and lacks strict physical proofs.

According to the noise’s generation mechanism, the noise is
dependent on the signal. Hence the denoising method with OSP,
which is based on the assumption that the noise is independent on
the signal, is problematic. Moreover, the polynomial model used
to describe the relation between the noise and signal is also based
on an assumption without effective proofs. In this paper, we
present a new denoising algorithm based on oblique subspace
projection (DOBSP). The oblique subspace projection (OBSP)
regards the signal subspace and noise subspace as oblique,
considering the correlation between the noise and signal. Fig. 1
shows the diagrams of OBSP and OSP.When noise is correlated
with signal, noise subspace is oblique with signal subspace. The

signal result with projecting the original image into signal
subspace along noise subspace is more accurate than that with
projecting the original image into signal subspace orthogonally.
Likewise, projecting the original image into noise subspace
along signal subspace obtains a better noise result than projecting
the original image into noise subspace orthogonally. Hence, the

Fig. 1. Diagrams of OBSP (dash line) andOSP (solid line). x is the original pixel;
< > and < > represent signal subspace and noise subspace, respectively.

Fig. 2. Overall process of the DOBSP.

Fig. 3. Traversal sequence of image pixels [6], [9].
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OBSP ismore effective and sensible than theOSPwhen the noise
is dependent on the signal. In DOBSP algorithm, identifying
signal and noise subspaces accurately is crucial. The paper
proposes a segmentation Gaussian filtering method, which can
reduce more influence of the image texture than traditional
Gaussian filtering, to estimate the signal and noise, respectively,
from the original image. The image texture is caused by the
spectral difference of various ground objects, especially referring
to the boundary between different adjacent ground objects in the
paper. Then PCA is applied to the signal and noise estimates to
get their respective eigenvectors, which are selectively used to
build their respective subspaces. In addition, simulated and real
Hyperion images are used as experimental data to assess the
DOBSP algorithm.

II. ALGORITHM AND DATA

A. Image Model

The original image’swhole space can be decomposed to the
signal subspace and noise subspace

indicates the direct sum. The signal subspace and noise
subspace may be orthogonal or oblique. For the original image
data

where , , and . is a vector of
the th pixel, . is the number of pixels, and is
the number of bands. The addition of vectors and obeys the
parallelogram rule.

Then, transform and from signal subspace and noise
subspace into image space , and obtain

and

where , . and are two OBSP matrices.
is the projection matrix on signal subspace along noise

subspace, while is the projection matrix on noise subspace
along signal subspace. Thus

Because vectors and lie in the same space , the addition
of and obeys the common matrix addition rule. If

( is the identity matrix), the noise subspace
is orthogonal to the signal subspace

Otherwise

where the result of should be nonsingular.
Equation (11) can also be written in matrix form as

B. DOBSP Algorithm

TheDOBSPalgorithmhasbeenbriefly introduced inSection I.
This algorithmmainly consists of the following three steps. First,
the segmentation Gaussian filtering, which can reduce more
effects of the image texture than traditional Gaussian filtering,
is applied to the original image. Thus the signal and noise are
estimated respectively. Secondly, the signal and noise estimates
are fed into PCA to identify their respective subspace basis
vectors. Finally, the oblique projection matrices and
are computed based on basis vectors of the two subspaces. The
overall process of the DOBSP is shown in Fig. 2. The imple-
mentation of the above three steps will be described in detail in
Sections II-B1–II-B3.

1) Signal and Noise Estimation: Gaussian filtering is an
information–extraction method [30]. Gaussian low-pass
filtering (GLPF) retains low-frequency information as the
signal, while Gaussian high-pass filtering (GHPF) extracts
high-frequency information as the noise. The GLPF uses the
Gaussian function

for weighting, where denotes the distance between adjacent
pixels and target pixel. is the standard deviation, and is the

Fig. 4. Kernel adjustment for irregular blocks in segmentation Gaussian filtering. The squares filled with gray and white represent two different ground objects.
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weight of the adjacent pixel [30]. The weighted function for
GHPF is

The Gaussian function is characterized by rotational
symmetry, with weight’s absolute value decreasing with
distance from target pixel increasing. These characteristics
allow GLPF (GHPF) to preserve (omit) some textures.
Inevitably, some textures will be smoothened by GLPF, while
some textures may be highlighted by GHPF. This shortcoming
will affect the accuracy of the signal and noise estimates.

To overcome this shortcoming, we replace the traditional
Gaussian filtering with segmentation Gaussian filtering. The
signal is estimated by segmentation Gaussian low-pass filtering
(SGLPF) and noise by segmentationGaussian high-pass filtering
(SGHPF). The segmentation Gaussian filtering consists of the
following two steps.

Firstly, the original image is segmented into homogeneous or
quasi-homogeneous blockswith a small spectral angle threshold,
based on the spatial distribution continuity of ground objects.
The adjacent two pixels whose spectral angle is smaller than the
threshold belong to one same block. The specific process of
image segmentation is shown in Fig. 3. Pixels are traversed
successively in row-major order. For each pixel awaiting seg-
mentation (filled with black), the spectral angle between it and
each previous pixel (filled with gray) which has been traversed
will be computed. The awaiting pixel belongs to the same block
as the pixel whose spectral angle with the awaiting pixel is
minimum.

Then, each block is processed with Gaussian filtering. This
study chooses the widely used kernels

and

for the SGLPF and SGHPF, respectively [31]. However, the
ground object’s spatial shape is usually irregular, thus the block

corresponding to this ground object is also not square. Hence, a
certain adjacent pixel covered by a kernel may belong to a
different block from the target pixel. In this case, the weight of
that adjacent pixel is added to the weight of the target pixel, and
that adjacent pixel’s weight is set to 0 (Fig. 4). This adjustment
for kernel avoids distortion of the pixel value. Through the
segmentation Gaussian filtering, the texture formed by

TABLE I
HYPERION BANDS USED IN THE EXPERIMENT

Fig. 6. Band 200 (914.0 nm) of the signal and noise estimates. (a1) Simulated
signal. (a2) Simulated noise. (b1) Signal estimated by SGLPF. (b2) Noise
estimated by SGHPF. (c1) Signal estimated by GLPF. (c2) Noise estimated by
GHPFand the red square indicates the location of the boundarypixel at line 64 and
column 96.

Fig. 5. Band 200 (914.0 nm) of the simulated image (a) and its segmented
result (b).
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neighboring blocks is reserved in signal estimate and omitted in
noise estimate.

2) Subspace Identification: The purpose of subspace
identification is to obtain the basis vector representing the
subspace. The basis vector is selected from the eigenvector
after PCA on image data by supervised method. The eigenvalue
and eigenvector of signal covariance matrix were computed
through PCA on signal estimate, while noise covariance
matrix’s eigenvalues and eigenvectors were computed through
PCA on noise estimate [32]–[34]. It is worth mentioning that
noise’s covariance matrix is diagonal if noise from different
bands is uncorrelated. Generally, several leading components of
the signal estimate after PCA represent the signal information.
The corresponding eigenvectors were chosen as the basis vectors
of signal subspace. If there is some signal included in the
noise estimate, the leading component probably contains the
signal information. The basis vector of noise subspace can
be chosen by visual inspecting noise’s principal component
images.

3) OBSP Matrix Computation: From the subspaces of the
signal and noise estimates, the relevance between the noise and

signal can be expressed using subspace angle [35], [36], with
smaller than denoting that noise subspace is oblique to signal
subspace. Mathematically, the OSP can be treated as a special
case of OBSPwhen the space angle between the signal and noise
subspaces is . Because the noise is usually correlated to
signal, their subspace angle can deviate from .

There are two transformation matrices involved in OBSP, the
oblique projection matrix , which projects the original
image onto the signal subspace along the noise subspace, and

, which projects the original image onto the noise subspace
along the signal subspace. We take as an example to
illustrate how to compute the oblique projection matrix. The
projection matrix of the signal subspace is

where is the basis vector of the signal subspace and is
the generalized inverse matrix of [37]

Fig. 7. Spectral curve of the boundary pixel at line 64 and column 96 from the signal and noise estimates. (a1) For signal estimate. (a2) Partial enlargement of (a1).
(b1) For noise estimate. (b2) Partial enlargement of (b1).

2472 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



The orthogonal complement projection matrix of the signal
subspace is

where is the identity matrix. The orthogonal projection matrix
of the noise subspace can be computed in the similar
way. Then, is obtained as [38], [39]

The corresponding signal result is

where is the original image. Similarly, we can compute
and get the noise result .

C. Experimental Data

Both simulated and real images were used in experiments to
assess the DOBSP algorithm. Five types of minerals’ spec-
trums (Alunite, Andradite, Calcite, Chlorite, and Kaolinite)
from the United States Geological Surve (USGS) spectral
library were chosen to generate the simulated signal. The
simulated signal data set has 420 bands and 128 samples of
128 lines. There are 16 ground objects corresponding to 16
( ) obvious blocks in the simulated signal [Fig. 5(a)]. In each
block, every pixel constitutes the same two types of those
minerals. The minerals forming different blocks are not exactly
the same. The abundance of the primary endmember in
each pixel is not less than 95%, which guarantees better homo-
geneity of the ground object. The total variance of the simulated
signal is

indicates the signal variance of the th band, .
The simulated noise is added to the simulated signal with a signal
to noise ratio (SNR) of 20 dB

where indicates the simulated noise’s total variance.
Thus

Every band from simulated noise is generated based on the
same set of random numbers with a standard normal distribution.
All the band variances from simulated noise follow a Gaussian
shape centered at the band

is the noise variance of the th band. controls the Gaussian
curve’s shape. In this study, . Because each band’s
variance of the simulated noise is different, the simulated noise
is colored. Moreover, the random numbers located at two certain
columns (columns 40 and 80) of the simulated noise are rear-
ranged according to the simulated signal pixels’ values at the
same columns. Thus, there are two striping noise, and the
simulated noise is correlated with the simulated signal. Finally,
the simulated image is generated from simulated signal and
simulated noise based on the image model (12). A real image
covering Chengde district in Hebei Province of China was
collected byHyperion sensor (it is a hyperspectral imager carried
by Earth-Observing-1 satellite by NASA) on November 14,

Fig. 8. Band 200 (914.0 nm) of the signal and noise results. (a1) Simulated signal.
(a2) Simulated noise. (b1) Signal result by DOBSP. (b2) Noise result by DOBSP.
(c1) Signal result by OSP. (c2) Noise result by OSP. (d1) Signal result by SBSR.
(d2) Noise result by SBSR.
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2002. A total of 114 bands were selected for the experiment
(Table I). The image has been corrected by Fast Line-of-sight
AtmosphericAnalysis ofHypercubes (FLAASH). TheHyperion

image contains striping noise and time-domain noise. To im-
prove the computation speed, it was resized to 128 samples of
128 lines.

Fig. 9. Spectral curve of the boundary pixel at line 64 and column 96 from the signal and noise results. (a1) For signal result. (a2) Partial enlargement of (a1). (b1) For
noise result. (b2) Partial enlargement of (b1).

Fig. 10. SSI curve of the signal and noise results. (a) For signal result. (b) For noise result.
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III. RESULTS AND DISCUSSION

For comparison purpose, the OSP and SBSR were introduced
during the experiment. In the OSP, the noise is assumed inde-
pendent on the signal. The SBSR algorithm uses a polynomial
model to describe the relationship between the noise and signal.
Moreover, both simulated and real Hyperion imageswere used to
demonstrate the ability of DOBSP algorithm.

A. Simulated Image

Fig. 5(b) shows the segmented result using a spectral angle
threshold of 0.05 radian.As can be seen, segmented image agrees
with the spatial distribution of ground objects. The estimated
signal and noise in each block are shown in Fig. 6. The signal
estimates by SGLPF and GLPF look similar. However, GHPF
failed to separate noise from signal on object boundaries. There
are obvious boundaries existing in the noise estimated by GHPF,
while little boundaries are included in the noise estimated by
SGHPF.Moreover, the spectrum of the boundary pixel at line 64
and column 96, which is marked by a red square in Fig. 6(c2),
was extracted for further investigation (Fig. 7). Both the signal
and noise arewell estimated by SGLPF and SGHPF respectively,

with minor difference from the simulated signal and noise at this
boundary pixel [Fig. 7(a1) and (a2)]. Compared with the signal
estimated by SGLPF, the signal estimated by GLPF shows a
larger difference with the simulated signal [Fig. 7(b1)]. The
spectrum difference between the noise estimated by GHPF and
the simulated noise is prominent at the boundary pixel [Fig. 7
(b2)].

In this experiment, the signal and noise are estimated by
segmentation Gaussian filtering with great accuracy, thus there
is little cross information between them. Moreover, the noise of
each band was generated from the same set of random numbers
with a given SNR. Hence, the first leading eigenvector of the
noise estimate’s covariance is adequate to be the basis vector of
the noise subspace, while the signal subspace was represented by
the first four principal components of the signal estimate. Their
subspace angle was 0.34 radian (about ), which shows that
the noise is closely related to the signal. In OSP, the first four
principal components of the simulated image are used for
computing signal subspace’s projection matrix. The signal sub-
space’s orthogonal complement projection matrix is regarded as
the noise subspace’s projection matrix. The signal and noise
results ofOSP are used as the signal and noise estimates in SBSR.
The order of the polynomial in SBSR was set as 2.

Fig. 8 shows the signal and noise results obtained by DOBSP,
OSP, and SBSR. The DOBSP gives a clearer signal image than
OSP and SBSR. There are no apparent striping and time-domain
noise in the signal image by DOBSP, compared with the signal
images by OSP and SBSR. Noise images by DOBSP and OSP
cannot be visually distinguished, while the noise image by SBSR
has large deviation. With the spectrum of the boundary pixel at
line 64 and column 96, it can be observed that DOBSP predicts

Fig. 11. SNR curve of the signal-band images.

Fig. 12. Band 46 (813.48 nm) of the Hyperion image (a) and its segmented
result (b).

Fig. 13. Band 46 (813.48 nm) of the signal and noise estimates. (a1) Signal
estimated by SGLPF. (a2) Noise estimated by SGHPF. (b1) Signal estimated by
GLPF. (b2) Noise estimated by GHPF and the red square indicates the location of
the texture pixel at line 55 and column 60.
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the signal andnoisemore accurately thanOSPandSBSR (Fig. 9).
Because the signal and noise are estimated by OSP in the SBSR,
the boundary pixel’s spectrums from signal and noise results by
SBSR are similar to those from signal and noise results by OSP.
In addition, the structure similarity index (SSI) between the
signal (noise) result and the simulated signal (noise) is computed
(Fig. 10). SSI measures the similarity about luminance, contrast
and structure between two images [40]. The closer to 1, the
higher the similarity. As can be seen in Fig. 10, both SSI’s of
signal and noise images by DOBSP are closer to 1 than those of
signal and noise images by OSP and SBSR. Hence, the DOBSP
produces more accurate signal and noise results than OSP and
SBSR. Moreover, the signal image obtained by DOBSP has
higher SNR than those by OSP and SBSR (Fig. 11). Almost
every band’s SNR of the signal image obtained by DOBSP is
larger than 30 dBwhilemost the SNR’s of bands in signal images
byOSP and SBSR are smaller than 30 dB. The original simulated
image’s overall SNR is 20 dB. The overall SNR of the signal
image by DOBSP is 34.239 dB which increases by 71.2%. The
overall SNR’s of the signal images by OSP and SBSR are just
20.106 and 20.003 dB, respectively. Both the OSP and SBSR
barely improve the simulated image quality. The SBSRproduced
the worst noise result among the three algorithms.

B. Real Image

The segmented result of the real Hyperion image with the
spectral angle threshold of 0.05 radian is shown in Fig. 12.
Because the composition and distribution of real ground objects
in real image are muchmore complicated than those in simulated
image, each block includes fewer pixels to ensure its spectral
homogeneity. Hence, segmented blocks donnot correspond to
major boundaries in the real image obviously. However, these
blocks agreewith specific objects in the spectrum. The signal and
noise estimates are shown in Fig. 13. The noise estimated by
GHPF has more textures belonging to the signal than that
estimated by SGHPF. For further investigation, the spectrum
of a texture pixel at line 55 and column 60 is extracted and shown
in Fig. 14. The spectral reflectance of the texture pixel from noise
estimated by SGHPF is around 0. It complies with the general

feature of noise. However, the spectral reflectance of the texture
pixel from noise estimated by GHPF is much larger. Meanwhile,
this texture pixel’s spectral reflectance from signal estimated by
GLPF is also larger than that from signal estimated by SGLPF.
Moreover, compared with the texture pixel’s spectrum from
signal estimated by SGLPF, its spectrum from signal estimated
by GLPF is much closer to the spectrum of the texture pixel from
the original real image.

The segmented block is not completely homogenous due to
the complexity of ground objects. Thus some textures that should
belong to signal appear in the noise estimate. As a result, the first
few principal components of the noise estimate contain some
signal. Therefore, the 7th–114th principal components’ eigen-
vectors of the noise estimate were chosen as the basis vectors of
the noise subspace through visual inspection, while the first four
principal components’ eigenvectors of the signal estimate were
used as the basis vectors of the signal subspace. The angle
between the signal subspace and noise subspace is 1.55 radians
(about ), indicating that they are not exactly orthogonal.
The noise has some correlation with the signal in the Hyperion
image. In OSP, the first four principal components’ eigenvectors
of the original image were used as the basis vectors of the signal
subspace. The order of the polynomial in SBSRwas also set as 2.

Figs. 15 and 16 show the signal and noise results by DOBSP,
OSP, and SBSR.All the three algorithms produced signal images
clearer than the original Hyperion image. However, the noise
results obtained by these algorithms are different. There are some
striping noise and time-domain noise in the band 19 of the
original image. As can be seen in Fig. 15, the DOBSP extracts
more effective striping noise than OSP. The noise image ob-
tained by DOBSP contains fewer textures than that by OSP,
while the noise image obtained by SBSR has obvious deviation.
As shown in Fig. 16, band 46 of the original image mainly has
time-domain noise. The noise image obtained by DOBSP has
fewer textures than that by OSP. The noise image by SBSR is
also inaccurate. The spectrum of the texture pixel at line 55 and
column 60 is shown in Fig. 17. The texture pixel’s spectrums
from the signal images byDOBSP andOSP are very close but not
the same.Comparedwith them, the texture pixel’s spectrum from

Fig. 14. Spectral curve of the texture pixel at line 55 and column 60 of signal and noise estimates. (a) For signal estimate. (b) For noise estimate.
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the signal image by SBSR is closer to that from the original
image. Moreover, the texture pixel’s spectrum from the noise
image by SBSR is very different with those from the noise
images byDOBSP andOSP. Though the real values of the signal
and noise in real Hyperion image are unknown, the noise result
by DOBSP which includes fewer textures should be more
accurate than those by OSP and SBSR. That the noise result by
DOBSP has higher accuracy confirms that the signal result by

DOBSP also has higher reliability than those by OSP and
SBSR from a side. In addition, the result by DOBSP doesnot
have so much difference with the result by OSP as in the
simulated image experiment. This is because the angle between
the noise subspace and signal subspace is in the simulated
image experiment, while the subspace angle for the real image is

. The correlation between the noise and signal in the
simulated image is much stronger than that in the real image.
Hence, the difference between DOBSP and OSP in real
image experiment is slighter than that in the simulated image
experiment.

In both two experiments, segmentation Gaussian filtering
obtained better signal and noise estimates than traditional Gauss-
ian filtering, and the DOBSP produced better signal and noise
results thanOSP and SBSR. However, the accuracy of signal and
noise estimates has a direct influence on the performance of
DOBSP. To reduce the impact of image texture on the estimate,
the image is firstly segmented into many homogeneous blocks
based on a small spectral angle threshold. The smaller the

Fig. 15. Band 19 (538.74 nm) of the signal and noise results. (a) Original
Hyperion image. (b1) Signal result by DOBSP. (b2) Noise result by DOBSP.
(c1) Signal result by OSP. (c2) Noise result by OSP. (d1) Signal result by SBSR.
(d2) Noise result by SBSR.

Fig. 16. Band 46 (813.48 nm) of the signal and noise results. (a1) Signal result by
DOBSP. (a2)Noise result byDOBSP. (b1) Signal result byOSP. (b2)Noise result
by OSP. (c1) Signal result by SBSR. (c2) Noise result by SBSR.
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spectral angle threshold, the more homogeneous the block, and
themore accurate the estimate. But if the spectral angle threshold
is too small, there may be only one pixel in the block, which will
reduce the accuracy of the estimate significantly. Hence, setting a
proper spectral angle threshold for image segmentation is im-
portant. Furthermore, it cannot guarantee every block to be
completely homogeneous even if the spectral angle threshold
is small, because the composition and distribution of the actual
ground objects are usually very complicated. Thus, some spectral

differences caused by nonuniformity of ground objects in a block
may be estimated as noise mistakenly. Then the inaccurate
estimates can affect subspace identification. Some noise’s com-
ponents may include signal information and some signal’s
components may contain noise information after PCA on noise
and signal estimates, which may have influence on the selection
of basis vectors for subspace. Inaccurate basis vectors will lead to
wrong oblique projection matrices, and thus generate incorrect
results.

Fig. 17. Spectral curve of the pixel at line 55 and column 60 of signal and noise results. (a) For signal result. (a1) and (a2) are partial enlargements of (a). (b) For noise
result. (b1) and (b2) are partial enlargements of (b).

2478 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014



IV. CONCLUSION

In this paper, a new denoising algorithm named DOBSP has
been proposed. It is based on OBSP, which considers the
correlation between the signal and noise. The algorithm consists
of three main steps. It first estimates the signal and noise through
segmentation Gaussian filtering, which reduces more influence
of the image texture than traditional Gaussian filtering does.
Then, the signal and noise estimates are fed into PCA to identify
their respective subspaces. The basis vectors of subspace are
chosen from eigenvectors of estimate’s covariance matrix by
visual inspecting the corresponding component images after
PCA. Finally, two OBSP matrices are computed from basis
vectors, and the signal and noise are extracted from the original
image through OBSP. To assess the DOBSP algorithm, both
simulated and real Hyperion images were used in experiments.
The OSP and SBSR algorithms were introduced for comparison.
Both signal and noise results obtained by DOBSP on the
simulated image are closer to the original simulated signal and
noise than those by OSP and SBSR, and the SNR of the signal
result by DOBSP improves significantly. The noise result ob-
tained byDOBSP on the Hyperion image has fewer textures than
that by OSP, while the noise result obtained by SBSR shows
large deviation. Moreover, the more accurate noise result ex-
tracted by DOBSP on the Hyperion image proves that the signal
result by DOBSP is more reliable than those by OSP and SBSR
from the side.
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