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a b s t r a c t

Soot aerosols have become the second most important contributor to global warming after
carbon dioxide in terms of direct forcing, which is the dominant absorber of visible solar
radiation. The optical properties of soot aerosols depend strongly on the mixing mechanism
of black carbon with other aerosol components and its hygroscopic properties. In this study,
the effects of atmospheric water on the optical properties of soot aerosols have been
investigated using a superposition T-matrix method that accounts for the mixing mechanism
of soot aerosols with atmospheric water. The dramatic changes in the optical properties of
soot aerosols were attributed to its different mixing states with atmospheric water (externally
mixed, semi-embedded mixed, and internally mixed). Increased absorption is accompanied
by a larger increase in scattering, which is reflected by the increased single scattering albedo.
The asymmetry parameter also increased when increasing the atmospheric water content.
Moreover, atmospheric water intensified the radiative absorption enhancement attributed to
the mixing states of the soot aerosols, with values ranging from 1.5 to 2.5 on average at
0.870 μm. The increased absorption and scattering ability of soot aerosols, which is attributed
to atmospheric water, exerted an opposing effect on climate change. These findings should
improve our understanding of the effects of atmospheric water on the optical properties of
soot aerosols and their effects on climate. The mixing mechanism for soot aerosols and
atmospheric water is important when evaluating the climate effects of soot aerosols, which
should be explicitly considered in radiative forcing models.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Soot aerosols affect the energy budget of the Earth by
absorbing solar radiation, influence cloud processes, and
alter the melting of snow and ice cover [17,19,47]. Because
the black carbon (BC) in soot aerosols dominates the
absorption of visible solar radiation, soot aerosols are the
second most important contributor of global warming
after carbon dioxide in terms of direct forcing in the
present-day atmosphere [21].

However, the uncertainties surrounding the net climate
forcing from soot aerosols are substantial because little is
known regarding the optical properties of soot aerosols.
Comparing field and remote sensing observations with many
climate models simulation indicates that the atmospheric
absorption attributable to soot aerosols is too low in many
climate models studies; these differences have not been
extensively examined, nor are they well-understood [5].

The BC particles in soot aerosols are co-emitted with
numerous other aerosols and aerosol precursor gases. Soon
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after emission, the BC particles mix with other aerosol
components in the atmosphere [49,37,13]. The optical proper-
ties of soot aerosols depend strongly on the mixing mechan-
ism of BC with other aerosol components ([48,6,30]), as well
as its hygroscopic properties [53,56,55,28]. Based on modeling
and laboratory studies, the strong absorption abilities of soot
mixed with other aerosols enhance the radiative forcing of the
aerosol by up to three times compared to the externally mixed
scenarios [21,14]. However, based on in-situ measurements on
urban plumes, the aerosol absorption enhancement for mixed
soot may have been overestimated in models [8,22,9].

Determining and explaining the BC mixing state
with other aerosol species is highly complex and remains
unresolved to date. The optical properties of soot aerosols
can depend strongly on the morphology [26,25,24,23,
33,39,38]. The hygroscopicity of soot aerosols critically
influences their optical properties [40,16,10]. How many
ever climate models, the mixing mechanism of BC with
other aerosol components and the water vapor in the
ambient atmospheric remain largely unknown because the
water and other semi-volatile species on the soot aerosol
surface evaporate easily during the in-situ measurements
performed under high-vacuum [51].

Due to the lack of reliable information on atmospheric
water effects on soot aerosols optical properties and the
critical importance of aerosols during radiative forcing assess-
ments, this study aims to investigate the effects of atmo-
spheric water on the optical properties of soot aerosols while
determining the mixing mechanism for soot aerosols and
atmospheric water. Theoretical simulations are required to
quantify the mixing mechanism based on the volatile proper-
ties of water. The Multiple Sphere T-Matrix [35] was used to
reconstruct the absorption properties and scattering proper-
ties of soot aerosols with different mixing states, extending
the formulation to arbitrary configurations of spherical
surfaces.

The enhancement in absorption due to the mixing states
has been discussed in several previous theoretical studies
([21,14]) and has been observed in both laboratory and field
experiments [8,28]. In this study, the effects of atmospheric
water on the optical properties (absorption coefficient, single
scattering albedo (SSA), and asymmetry parameter (ASY)) of
soot aerosols with different mixing states (externally mixed,
semi-embedded mixed, and internally mixed) have been
investigated using theoretical studies. These findings should
improve our understanding of the effects of atmospheric
water on the optical properties of soot aerosols and their
effects on the climate.

2. Mixing states of soot aerosols with atmospheric water

The in-situ and laboratory measurements [49,1,13] indi-
cate that the pure BC particles consist of small spherical
primary particles combined into branched and often-
hydrophobic aggregates. Pure BC particles tend to be coated
with a thin layer of other aerosol components in the atmo-
sphere through the coagulation and condensation of second-
ary aerosol compounds. With the aging of the light absorbing
carbon particles, most BC particles are thickly coated and
tend to be compact. Coating BC particles with water-soluble
compounds changes their hygroscopic properties [41,44,45,
55,27], which tend to be hydrophilic. For thinly coated light
absorbing carbon aerosols, the BC particles are thinly coated
by other aerosol components, and the morphology of the BC
particles is still visible. For heavily coated light absorbing
carbon aerosols, however, the BC particles are embedded into
other aerosol components, and themorphology of BC particles
is not visible.

To quantify the effects of water on the optical proper-
ties of soot aerosols in different mixing states, we assume
that only three chemical compounds exist in the soot
aerosols: black carbon (BC), sulfates, and water. Based on
transmission electron microscopy (TEM) measurements
[20,46,31,29,2] and the hygroscopicity of soot aerosols,
the three mixing states of soot aerosols with and without
water were modeled: externally mixed; semi-embedded
mixed and internally mixed.

Fig. 1 shows a schematic image of the three mixing
states. Fig. 1a shows the external mixture of pure BC and
sulfate particles without water. Due to the hydrophilic
properties of sulfate, in the wet condition, the sulfate tends
to be coated with a water shell; the external mixture with
water is shown in Fig. 1d. As the pure BC particles age, the
aggregates can become semi-embedded (Fig. 1b) or intern-
ally mixed with the sulfate particles (Fig. 1c), and the
corresponding hydrous mixing states are shown in Fig. 1e
and f, which feature uniform water coatings.

The morphologies of the soot aerosols can be modeled
using the parallel diffusion limited aggregation (DLA) algo-
rithm [34]. The construction and morphology of the fractal
clusters can be described by a well-known statistical scaling
law:

Ns ¼ k0
Rg

a

� �Df

ð1Þ

R2
g ¼

1
Ns

∑
Ns

i ¼ 1
r2i ð2Þ

where Ns is the number of monomers in the cluster, a is the
mean radius of the monomer. k0 is the fractal prefactor, Df is
the fractal dimension, Rg is the radius of gyration, which
represents the deviation of the overall aggregate radius in a
cluster, and ri is the distance from the ith monomer to the
center of the cluster.

For the sake of simplicity, the sulfate particles are
treated as homogeneous spheres that are either coated
or embedded within water. Water is treated as a uniform
coating on the surface of sulfate particles. The radius of the
sulfate particles (Rsu) is used to reconstruct the sulfate
particle, while the equivalent volume radius of water (Rw)
is used to indicate the water content on the sulfate particles.
For theoretical calculations, Rw is a multiple of the radius of
the soot monomer (a). We chose three representatives
Rw: 0a ð0 μmÞ; 12a ð0:18 μmÞ, 24a ð0:36 μmÞ.

To simulate these types of soot-containing mixtures, the
surfaces of the soot-containing models do not overlap for the
single scattering calculations, due to the limitations of the
superposition T-matrix approach [36]. The external sulfate/
water and soot aggregate mixtures can be modeled easily
using a common DLA method. Moreover, the internal mix-
tures are modeled further based on the spherical constraints
of the larger sulfate/water particle. The geometric center of



Fig. 1. Schematic images of the three mixing states of soot aerosols with or without water: (a) and (d) are the external mixing state of BC with sulfate
particles, (b) and (e) are the semi-embedded mixing state of BC with sulfate particles, where BC is not uniformly coated by the sulfate particles, and (c) and
(f) are the internally mixing state of BC with sulfate particle, where BC is heavily coated by sulfate particles. The black regions denote BC. The gray and blue
regions denote sulfate and water, respectively. The radius of the sulfate particles (Rsu) is used to reconstruct the sulfate particle, while the equivalent
volume radius of water (Rw) is used to indicate the water content on the sulfate particles. a is the radius of the soot monomer. The surfaces of the soot-
containing models do not overlap for calculations, due to the limitations of the superposition T-matrix approach. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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the internal mixtures is random, but the initial soot monomer
and the sulfate are concentric. However, the semi-embedded
models are divided into inner and outer clusters by the
boundary of the larger sulfate/water sphere. First, pairs of
monomers containing one or two inner monomers and an
equal number of outer monomers make physical contact with
each other as initial seeds (solid small spheres). Afterwards,
the inner monomers and outer monomers of soot clusters
aggregate (dashed small spheres). The aggregation process is
constrained by the fractal parameters required for the mor-
phology, including the fractal prefactor (k0), fractal dimension
(Df) and the inner (Ns;in) and outer monomer numbers (Ns;out)
(the sum is the total monomer number of the soot aggregates
(Ns)). Here, the inner (Ns;in) and outer monomer numbers
(Ns;out) are equal (ð1=2ÞNs) for the semi-embedded soot
containing mixtures (Fig. 2).

The morphological parameters of different mixing states
models are based on the results of in-situ and laboratory
measurements. Bond and Bergstrom [7] reported the value of
mean radius of monomer a in the range of 0.01–0.025 μm.
In this study, the mean radius of the monomer a¼ 0:015 μm
is assumed constant. The fractal dimension Df of aged soot
aerosols varies over a range of about 2.0–2.5 [43,23]. In this
study, the fractal dimension Df ¼ 2:2 is assumed constant.
To investigate the effects of atmospheric water on optical
properties of soot aerosols, the assumptions of number of the
monomers Ns is 60, and the fractal prefactor k0 ¼ 1:2. The
volume-equivalent radius R of internally mixed aerosols lies
typically in the range between 0.05 and 0.5 μm [23]. In this
study, the radius of sulfate particle Rsu ¼ 0:15 μm is assumed
constant. The volumes of sulfate and water remain same in
every situation, meaning that the outer coatings (sulfate/
water) would be larger for the semi-embedded and internal
mixtures due to the volumetric effects of the inserts. The
random orientation scattering properties are obtained analy-
tically from the MSTM software, and these results are
averaged by multiple calculations for 10 different clusters
with the same morphological parameters.

The refractive indices of the pure black carbon particles are
the values reported by Chang and Charalampopoulos [11],
which lie in the range specified by Bond and Bergstrom [7].
The refractive indices of sulfate and atmospheric water are
obtained from the OPAC database [18]. Table 1 shows the
refractive indices of the soot aerosols.

3. The effect of atmospheric water on the optical
properties of the soot aerosols

To quantify the effects of the atmospheric water on the
optical properties of the soot aerosols in different mixing
states, the MSTM version 3.0 (Multiple Sphere T-Matrix)
was used to reconstruct the absorption and scattering



Fig. 2. Models of the three mixing states using the DLA method ((a) external mixtures, (b) semi-embedded mixtures, and (c) internal mixtures).

Table 1
The refractive indices of the different aerosol components.

Wavelength (μm) Black carbon Sulfate Water

0.440 m¼1.70þ0.64i m¼1.44 m¼1.34
0.670 m¼1.76þ0.57i m¼1.44 m¼1.33
0.870 m¼1.79þ0.57i m¼1.44 m¼1.32
1.020 m¼1.81þ0.58i m¼1.44 m¼1.32
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properties of the soot aerosols in three mixing states at
different wavelengths (0.440 μm, 0.670 μm, 0.870 μm, and
1.020 μm), extending the formulation to arbitrary config-
urations of spherical surfaces. The spheres can be located
internally or externally relative to each other while obey-
ing the following constraint: a surface cannot intersect (or
cut) any other surface. The version 3.0 software (codes,
documentation, input files, and executables for serial
windows machines) can be downloaded from http://
www.eng.auburn.edu/users/dmckwski/scatcodes/.

Fig. 3 shows the variations in the optical properties of
the soot aerosols with three mixing states. The absorp-
tion cross sections of external mixtures states were
independent of thickness of water shell on the surface
of soot aerosols. For external mixtures states condition,
the hydrophobic properties of BC cannot be changed
without the sulfate being coated. Because soot does not
interact with atmospheric water, there is no impact of
the amount of water. The BC particles are the major
contributors to the absorption of soot particles. For the
semi-embedded and internal mixtures states, the
absorption cross-sections were enhanced because the
water shell enlarged the effect of lens. Increasing the
atmospheric water content increased the size of the
water shell, reaching up to 40%.

Mixing the soot aerosols with atmospheric water
changed the scattering properties dramatically (the single
scattering albedo and the asymmetry parameter) even for
the external mixture states (Figs. 4 and 5). The single
scattering albedo of the soot aerosols was enhanced
relative to that under dry conditions. The larger water
shell induces stronger scattering. Decreasing the size
parameter (x¼ πD=λ, where D is the particle diameter,
λ is the wavelength) increased the scattering, reaching 54%
at 1.020 μm. The asymmetry parameter exhibits a similar
yet larger enhancement, reaching 3-fold at 1.020 μm. The
asymmetry parameter increased when increasing the
diameter of the water shell. A larger asymmetry parameter
(stronger forward scattering) indicates that the incoming
radiation is scattered back to its source less.

Provided that the radii of sulfate particle remain con-
stant, the effect of atmospheric water on the optical
properties of soot aerosols depends mostly on the mixing
states of soot aerosols with sulfate and atmospheric water.
Our studies show that the radiative absorption of the soot
aerosols is enhanced due to the atmospheric water, which
is accompanied by a large increase in scattering; the
increased scattering is reflected by the increased single
scattering albedo. The asymmetry parameter also increased
when increasing the diameter of the water shell. Several
studies [5,42] have shown that increasing the radiative
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Fig. 3. Absorption coefficient of the soot aerosols with three mixing states (external, semi-embedded, internal). The different colors correspond to the
optical properties of soot aerosols with different water contents (three representatives Rw: 0a ð0 μmÞ; 12a ð0:18 μmÞ, 24a ð0:36 μmÞ). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Single scattering albedo of the soot aerosols with three mixing states (external, semi-embedded, internal). The different colors correspond to the
optical properties of soot aerosols with different water contents (three representatives Rw: 0a ð0 μmÞ; 12a ð0:18 μmÞ, 24a ð0:36 μmÞ). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Asymmetry parameters of the soot aerosols with three mixing states (external, semi-embedded, and internal). The different colors correspond to
the optical properties of soot aerosols with different water contents (three representatives Rw: 0a ð0 μmÞ; 12a ð0:18 μmÞ, 24a ð0:36 μmÞ). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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absorption can exert a higher positive direct radiative force.
In contrast, the enhanced single scattering albedo and
asymmetry parameter can decrease the solar radiation
absorption into the atmospheric layer [52,4]. Radiative
forcing calculations suggest that a 10% decrease in the
asymmetry parameter would cause a 19% reduction in the
atmospheric radiative force [3,15].
4. The morphological effect of pure black carbon on the
optical properties of the soot aerosols

Several studies show that the optical properties of the
soot aerosols depend strongly on the morphology of the
pure black carbon particles [32,54,12]. Yin and Liu [50]
have investigated the effects of water coating on the
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radiative properties of soot fractal aggregates in atmo-
sphere, and found that the effect of change in morphology
on the radiative properties cannot be neglected in wet air.
They approximately look as aggregates composed of
spherules attached to each other, which are individual
primary spheres core coatings with water shell. They
believe that soot fractal aggregates are hydrophilic, which
can be coated by water directly.
Fig. 6. Sensitivity of pure black carbon morphologies (three fractal dimensions a
the optical properties (cross sections of absorption, single scattering albedo (SS
atmospheric water contents in the external mixtures.
The mixing states of BC particles with other aerosol
particles and atmospheric water in this study are different
with the mode assumed by Yin and Liu (2010). In this
study, the pure BC is mixed with other water-soluble
particles (sulfates). Coating of BC particles with water-
soluble compound changes their hygroscopic properties,
which tend to be hydrophilic. The coating (sulfates and
atmospheric water) is much larger than the primary
re chosen to represent the compactness of particles: 2.2, 2.5, 2.8) toward
A) and asymmetry parameters (ASY)) of the soot aerosols with different



Fig. 7. Sensitivity of pure black carbon morphologies (three fractal dimension are chosen to represent the compactness of particles: 2.2, 2.5, 2.8) toward
the optical properties (cross sections of absorption, single scattering albedo (SSA) and asymmetry parameters (ASY)) of the soot aerosols with different
atmospheric water contents in the semi-embedded mixtures.
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sphere of BC particles. The sensitivity of pure black carbon
morphologies toward the optical properties of soot aero-
sols with three mixing states is investigated. Three fractal
dimensions of BC particles represent the compactness of
the particles: 2.2, 2.5, and 2.8.

Figs. 6–8 show that compared to previous studies, our
results reveal only negligible morphological effects (fractal
dimension) from pure black carbon on the optical proper-
ties of the soot aerosols with three mixing states. The
morphological effects (fractal dimension) on the soot
aerosols are weakened by contribution of sulfate and
atmospheric water.
5. Enhancement in the optical properties due to the
mixing state of the soot aerosols

Our theoretical simulation studies indicate that atmo-
spheric water can affect the radiative absorption enhance-
ment based on the mixing states of soot aerosols. In this
study, the enhancement was defined as the ratio between
the optical properties of the semi-embedded/internal
mixing state and the optical properties of the external
mixing state.

The absorption enhancements attributed to mixing
state can reach 2-fold when pure BC is internally mixed



Fig. 8. Sensitivity of pure black carbon morphologies (three fractal dimension are chosen to represent the compactness of particles: 2.2, 2.5, 2.8) toward
the optical properties (cross sections of absorption, single scattering albedo (SSA) and asymmetry parameters (ASY)) of the soot aerosols with different
atmospheric water contents in the internal mixtures.
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with sulfate particles without water compared to the
external mixture. When the absorption is calculated, while
accounting for the atmospheric water, the absorption
enhancement increases, reaching a 2.5-fold increase. The
difference in the absorption enhancements between the
semi-embedded mixing state and the external mixing
state is smaller, ranging from 1.5 (for no water) to 2.2 at
0.44 μm. The smaller absorption enhancements for semi-
embedded mixing state occur due to the larger water shell
effect obtained for the internal mixing state compared to
the semi-embedded mixing state (Figs. 9 and 10).

In addition, the effects of the atmospheric water on the
scattering ability attributed to the mixing states have also
been investigated. In contrast, the scattering ability
decreased when the BC is in semi-embedded/internal
mixing states instead of the external mixing state. When
the Rw is 0a (for no water), the SSA reduction can reach
10% for internal mixing state, while the SSA reduction for



Fig. 9. Ranges for the absorption enhancement attributed to the mixing states of the soot aerosols. The absorption enhancement is increased after
accounting for the atmospheric water effects. The wavelengths used for the calculations were 0.440, 0.670, 0.870, and 1.020 μm.

Fig. 10. Ranges for the reduction in scattering due to the mixing states of soot aerosols. The wavelengths used for the calculations were 0.440, 0.670, 0.870,
and 1.020 μm.
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the semi-embedded mixing state is smaller, reaching 5%.
After accounting for the effect of the atmospheric water,
the SSA reduction decreased (less than 1%). The effect of
the mixing states on the ASY is small, especially with
water, and this can be ignored.

6. Conclusions and discussion

The effects of the atmospheric water on the optical
properties of the soot aerosols were studied theoretically
while accounting for the mixing mechanism utilized by
the black carbon with other aerosol particles and atmo-
spheric water at different wavelengths (0.440, 0.670,
0.870, and 1.020 μm).
Based on the transmission electron microscopy mea-
surements and the hygroscopic properties of the soot
aerosols, three mixing states with and without water were
modeled: externally mixed; semi-embedded mixed and
internally mixed. MSTM version 3.0 (Multiple Sphere
T-Matrix) was used to reconstruct the absorbance and
scattering properties of the soot aerosols in the three
mixing states.

An increased absorption is accompanied by an enhanced
scattering ability attributed to the atmospheric water on the
surfaces of the soot aerosols, which has an opposing effect on
climate change. The absorption of the external mixtures
states remained independent of the atmospheric water, while
the semi-embedded mixtures states and internal mixtures
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states showed enhanced absorption cross sections because
the water shell increases the lens effect. Increasing atmo-
spheric water content resulted in growth of water shell, and
the enhancement can reach 40%. Mixing the soot particles
with water changed the scattering properties of soot aerosols
dramatically, even for the external mixtures. The single
scattering albedo of the soot aerosols was enhanced relative
to that under dry conditions. Decreasing the size parameter
increased the scattering enhancement, reaching 54%. The
asymmetry parameter has a similar yet larger enhancement,
reaching three-fold.

Compared to previous studies, our results reveal only
negligible morphological effects (fractal dimension) from
pure black carbon on the optical properties of the soot
aerosols with three mixing states. The morphological
effects on the soot aerosols are weakened by contribution
of sulfate and atmospheric water.

In addition, the atmospheric water increased the
enhancement of the radiative absorption based on the
mixing states of the soot aerosols from 1.5- to 2.5-fold on
average at 0.870 μm. The semi-embedded/internal mixing
states have a smaller single scattering albedo and asym-
metry parameter than the externally mixing states. When
the water content increased, the differences in the scatter-
ing ability of the soot aerosols in the three mixing states
decreased.

The high sensitivity of the optical properties of the soot
toward the atmospheric water content reveals that the
effect of soot aerosols exerted on climate change cannot be
evaluated accurately until the effects of the atmospheric
water on the optical properties of the soot aerosol in
different mixing states are known.
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