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[1] Sequential data assimilation methods, such as the ensemble Kalman filter (EnKF),
provide a general framework to account for various uncertainties in hydrologic modeling,
simultaneously estimating dynamic states and model parameters with a state augmentation
technique. But this technique suffers from spurious correlation for impulse responses, such
as the rainfall-runoff process, especially in the case of high-dimensional state spaces
containing various parameters. This paper presents a partitioned forecast-update scheme
based on the EnKF to reduce the degree of freedom of the high-dimensional state space and
to correctly capture covariances between states and parameters. In this update scheme, the
parameter set is partitioned into several types according to their sensitivities, and each type
of sensitive parameter is estimated in an individual loop by repeated forecast and
assimilation. We test this scheme with a synthetic case and a distributed hydrologic model
concerning the real case of the Zhanghe river basin in China. The results from the synthetic
experiments show that this new scheme can retrieve optimal parameter values and represent
the correlations in a more stable manner when compared with the standard state
augmentation technique. The real case further demonstrates the robustness of the partitioned
update scheme for state and parameter estimation owing to the low estimation errors of
streamflow in the assimilation and the prediction periods.
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1. Introduction

[2] Hydrologic modeling is always plagued by various
uncertainties associated with model parameters, driving
force inputs, model structure, and output observations
[Ajami et al., 2007; Zhang, 2002]. To reduce these uncer-
tainties, model calibration that aims to minimize the dis-
crepancy between simulated and observed model outputs is
a mandatory element of a good modeling practice
[Refsgaard et al., 2010]. For many years, a great effort has
been directed toward calibration methods, including direct
search optimization [e.g., Duan et al., 1992, 1993] and
probabilistic estimation [e.g., Beven and Binley, 1992;
Beven and Freer, 2001a].

[3] However, most of these methods attribute the under-
lying uncertainty in the input-output representation of the
model to the uncertainty of parameter estimates [Kavetski
et al., 2004; Vrugt et al., 2005]. A few studies based on the
Bayesian theorem have tried to account for various sources

of uncertainties (e.g., the Bayesian approach for total error
analysis (BATEA)) [Kavetski et al., 2004], but such
approaches are rarely used for nonlinear watershed models
[Vrugt et al., 2005]. A comprehensive review on confront-
ing modeling uncertainties can be found in Kavetski et al.
[2004] and Liu and Gupta [2007].

[4] In a separate line of research, newly developed data
assimilation methods, especially sequential data assimila-
tion techniques, have demonstrated potential for explicitly
dealing with various uncertainties and for optimally merg-
ing observations into uncertain model predictions [Troch
et al., 2003]. One of these techniques is the particle filter
that is suitable for non-Gaussian nonlinear dynamical mod-
els [Han and Li, 2008]. Particle filters have received much
attention in hydrologic modeling [DeChant and Morad-
khani, 2012; Moradkhani et al., 2005a; Moradkhani and
Sorooshian, 2008]; however, they may impose a remark-
able computational burden for obtaining accurate results
[Weerts and El Serafy, 2006; Han and Li, 2008]. As a pro-
totype of sequential data assimilation techniques, the Kal-
man filter (KF) [Kalman, 1960] and the ensemble Kalman
filter (EnKF) [Evensen, 1994] recursively result in optimal
estimation for linear dynamic models with Gaussian uncer-
tainties. The EnKF has earned its popularity in hydrology
due to its attractive features, such as real-time adjustment
and ease of implementation [Reichle et al., 2002]. In some
applications, it was mainly used for dynamic state estima-
tion, while the parameters were fixed at predefined values,
thereby explicitly ignoring the effects of parameter uncer-
tainty and interaction [Vrugt et al., 2005]. That is partly
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attributable to the fact that the parameter estimation is more
difficult than the state estimation in hydrology, since the
relation between parameters and states are nonlinear for
most hydrological models and model parameters cannot be
directly measured like states.

[5] The EnKF also provides a general framework for
state and parameter estimation. This joint estimation can be
performed, typically, with two strategies. One is a hybrid
strategy with simultaneous optimization and data assimila-
tion [Vrugt et al., 2005]. Its implementation consists of an
inner EnKF loop and an outer global-optimization loop.
The former is for state estimation conditioned on an
assumed parameter set, and the latter for batch estimation
of parameters using an optimization method, such as the
Shuffled Complex Evolution Metropolis (SCEM-UA) algo-
rithm [Vrugt et al., 2003]. The optimal set of parameters
identified by this strategy, however, does not guarantee the
best model forecasts when the data assimilation is not
implemented or no state adjustments are allowed. The other
is a state augmentation strategy, which extends the state
vector to include the parameter set. Parameters are consid-
ered as part of the model state, and they are updated
together with the dynamic states when observations are
available [Annan et al., 2005]. So this technique is a simple
extension of the EnKF in which the parameter estimation
problem is generally formulated to find the joint probability
density of parameters and model states, given a set of
measurements and a dynamic model with known uncertain-
ties [Evensen, 2009].

[6] For joint state-parameter estimation, the state aug-
mentation technique with the EnKF has been successfully
demonstrated in many areas, such as the earth system
model [Annan et al., 2005], the hydrogeologic model
[Chen and Zhang, 2006; Liu et al., 2008], and catchment-
scale hydrologic models [Young, 2002; Xie and Zhang,
2010]. This technique is also undergoing improvement.
One example is the constrained schemes that can be exerted
on the EnKF to avoid violating physical principles in
updating states and parameters [Wang et al., 2009].
Another example is the dual state-parameter estimation
approach that can decrease the degree of freedom of the
augmented state vector in the updating process [Morad-
khani et al., 2005a, 2005b]. In addition to the EnKF, parti-
cle filtering has also been used for joint state-parameter
estimation [Moradkhani et al., 2005a, 2005b]. However,
most of these applications in rainfall-runoff characteriza-
tions aim at lumped hydrologic models with a small num-
ber of states and parameters.

[7] For distributed hydrologic models, this state augmen-
tation technique may suffer from spurious or incorrect cor-
relations between states and parameters, which would
directly spoil parameter estimation during data assimila-
tion. This is basically due to biased model error quantifica-
tion and a large degree of freedom for high-dimensional
vectors of the augmented state. This disadvantage will be
transferred to the covariance matrix that is computed with
the (biased) ensemble states within the framework of the
EnKF. Especially for the nonlinear impulse response, such
as the rainfall-runoff process, the correlations between
dynamic states and parameters are easily overestimated or
underestimated by the interference of parameters, since dif-
ferent types of parameters contribute differently to the

impulse response in the alternate wet-dry seasons. More-
over, when the augmented state vector holds a high dimen-
sion, the joint estimation is possibly unstable and
intractable [Moradkhani et al., 2005a, 2005b]. To better
approximate the correlations, a localization scheme is capa-
ble of suppressing correlations beyond a certain separation
distance [Reichle and Koster, 2003]. The localization
scheme may be impractical for the joint state-parameter
estimation, however, especially since observations (typi-
cally, of streamflow) are usually sparse in a watershed.

[8] To reduce the degree of freedom of high-dimensional
states and achieve simultaneous state-parameter estimation,
a partitioned update scheme based on the EnKF is proposed
in this study. This scheme, inspired by the localization
scheme [Reichle and Koster, 2003] and the dual state-
parameter estimation approach [Moradkhani et al., 2005a,
2005b], partitions the parameter set according to the parame-
ter types, and estimates the dynamic states and parameters
by repeatedly assimilating observations after a separate fore-
cast. Moreover, the parameters are artificially evolved at
each time step using a kernel smoothing method to over-
come the overdispersion of parameter samples [Liu, 2000].
This scheme is first examined with synthetic experiments
and further evaluated with a distributed hydrologic model
regarding a real case. Results show that this partitioned
update scheme can strengthen and expand the robustness of
the state augmentation technique due to the fact that it
retrieves acceptable parameter values and captures the tem-
poral patterns of dynamic states compared with the standard
state augmentation technique. It should be noted that, in this
paper, distributed hydrologic models hold a general defini-
tion [Reed et al., 2004; Smith et al., 2004] that includes con-
ceptual distributed models (e.g., the Soil and Water
Assessment Tool (SWAT) model used in this study) and
fully physically based models [e.g., the SHE model,
Refsgaard et al., 2010].

[9] The connotation of the parameter type is associated
with the distributed hydrologic model in which each compu-
tational unit contains the target parameter to be estimated.
For example, in SWAT, the parameter CN2 (see section 4.2)
is related to the surface runoff generation in each hydrologic
response unit (HRU). Since there are many CN2 parameters
to be estimated for all HRUs in a watershed, ‘‘CN2’’ is
regarded as one parameter type. In a general sense, it is also
reasonable that a parameter type contains only one parame-
ter, as shown in section 3, for the synthetic experiments.

[10] This paper is organized as follows. In section 2, we
present an overview of the EnKF framework and describe
the new parameter update scheme with the kernel smooth-
ing method for parameter evolution. In section 3, we exam-
ine the performance of the new algorithm by means of
synthetic experiments with a simplified rainfall-runoff
model. In section 4, we further demonstrate the scheme
using a real case using a distributed hydrologic model, i.e.,
the SWAT. Finally, in section 5, we summarize the meth-
odology and discuss the results.

2. Data Assimilation Method

2.1. Ensemble Kalman Filter

[11] As a Monte-Carlo variant of KF, the EnKF propa-
gates an ensemble of model realizations to represent the
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error covariance of states, projects the states into an obser-
vational space, and then updates the prior ensemble with a
linear combination of the modeling and the observation
[Evensen, 1994]. The EnKF operates sequentially by per-
forming, in turn, a forecast step and then a filter update
step. In general, the forecast step for an ensemble member i
between times t and t21 can be written as:

xi2
t 5M xi1

t21; h; u
i
t

� �
1ei

t; ei
t � Nð0;QtÞ (1)

where xi2
t and xi1

t-1 are the forecast state vector at time t and
the updated state vector at time t21, respectively; M(�)
stands for a nonlinear model operator; h is the model
parameter vector and is assumed to be known; and ui

t is the
forcing input vector. The model error vector ei

t (or perturba-
tion vector) is assumed to obey Gaussian distribution with
zero means and covariance Qt.

[12] Based on a linear correction, the filter update step at
time t can be expressed as:

xi1
t 5xi2

t 1Kt yi
t2Hðxi2

t ; hÞ
� �

(2)

where yi
t denotes the ith observation sample obtained by

adding a Gaussian noise to the actual observation; and H is
the observation operator that maps the model states to the
observation space. For detailed computation of the Kalman
gain matrix, Kt, please refer to Evensen [2003].

[13] For the joint parameter and state estimation, the
state vector xt can be augmented to include the parameter
vector h, which is perturbed initially based on a priori dis-
tribution. As the model ensemble evolves, the parameter
vector is passively updated together with state variables
when observations are available. A brief description about
this standard joint parameter and state estimation is given
in section 2.3.2. We will focus on the discussion of the
improvement based on this standard augmentation
technique.

2.2. Parameter Evolution

[14] In the framework of joint estimation, the ensemble
of parameters is prone to shrink with the ensemble of
parameters being updated in data assimilation (i.e., the var-
iance of parameters will become small). Thus, the parame-
ter evolution is often needed to avoid ensemble shrinkage
and filter degeneracy [Liu, 2000], although this idea may
violate, to some degree, the basic conception that the
parameters are principally assumed to be constant in
dynamic models. Correspondingly, we would expect the
rate of the parameter variations to be slower than that of
the state variation [Liu and Gupta, 2007]. One of the ideas
considers the parameter evolution as a random walk pro-
cess by adding small random perturbations to the posterior
distribution at each time step:

hi2
t 5hi1

t-11si
t; si

t � Nð0; TtÞ (3)

where hi2
t is the ith ensemble member forecast at time t ;

hi1
t21 is the ith updated ensemble member at time t21; h

1

t21
is the ensemble mean of the n members; and Tt is a prede-
fined covariance. This idea has been used in many cases
[e.g., Chen and Zhang, 2006; Wang et al., 2009], but it

contains a key drawback in that such perturbations will
cause overdispersion of parameter samples, loss of infor-
mation between time steps, and a diffused posterior spread
of parameters [Liu, 2000; Moradkhani et al., 2005a,
2005b].

[15] One remedy for this problem is the kernel smooth-
ing of parameter samples, developed by West [1993] and
extended by Liu [2000]. It can be briefly expressed as:

hi2
t 5ahi1

t-11 12að Þh1

t-11si
t; si

t � Nð0; TtÞ (4)

h
1

t-15
1

n

Xn

i51

hi1
t-1 (5)

Tt5h2var h1
t-1

� �
(6)

where a is the shrinkage factor being restricted in (0, 1],
typically in [0.95, 0.99], h is the smoothing factor with a
relation of a21h251 and Tt is the covariance derived from
the smoothing factor and the ensemble variance var h1

t

� �
.

In this method, only one variable, the smoothing factor h, is
to be determined experimentally and somewhat subjec-
tively. Moreover, it may depend on the magnitude of the
ensemble variance var h1

t-1

� �
. When var h1

t-1

� �
is quite

large, h will be defined as
ffiffiffiffiffiffiffiffiffiffiffi
12a2
p

to reduce the ensemble
spread. When var h1

t21

� �
is so small that it may eventually

cause filter divergence, h needs to be specified with a larger

value ðh >
ffiffiffiffiffiffiffiffiffiffiffi
12a2
p

Þ to inflate the ensemble spread (h 5 1.0
in this study).

[16] Clearly, the overdispersion issue is relaxed by the
location shrinkage, which pushes samples h1

t21 toward their
mean h

1

t21 before adding a small perturbation implied in
the normal kernel. The parameter vector after this evolution
(i.e., h2

t ) is increasingly randomized to some degree due to
the added random numbers (i.e., si in equation (4)). The
magnitude of this randomization (i.e., Tt in equation (6)) is
greater than the variance of the initial ensemble spread
(equal to (ð12aÞ2var h1

t-1

� �
, derived from the variance of

the 12a times of anomalies of parameters). However, the
ensemble mean and variance are preserved in parameter
evolutions, providing a smooth density between time t and
time t 2 1. So this artificial evolution offers the advantage
of the random walk scheme to avoid the ensemble shrink-
age, while constraining discontinuity in parameter evolu-
tions and information loss over time. It has been
successfully applied for parameter estimation in hydrologic
models [Moradkhani et al., 2005a, 2005b] and ecosystem
models [Chen et al., 2008]. In this study, we incorporate it
into the data assimilation algorithms to evolve the parame-
ters, unless otherwise mentioned.

2.3. Methodology of Parameter Updating

2.3.1. Partitioned Update Scheme
[17] In the standard joint state-augmentation method

(called SU_EnKF hereafter), the covariance approximation
with a limited ensemble size and perturbed noises is likely
to yield an erroneous covariance due to the nonlinear rela-
tions between states and parameters [Moradkhani et al.,
2005a, 2005b]. With such covariance in the Kalman gain
matrix, consequently, the simultaneous update of states and
parameters is likely to be impaired (e.g., unstable estima-
tion). Although the nonlinearity is model-dependent, a
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general character of hydrological models is the impulse
response of rainfall-runoff. Thus, some model parameters
are activated or inactivated periodically. For example, the
parameter associated with surface runoff (e.g., CN2 in
SWAT) is only activated when rainfall occurs. During non-
rainfall periods, (in the dry season, the groundwater flow is
dominant), if all parameters are updated based on equations
(6) and (7), unstable or unreasonable estimations may be
obtained because of the parameter interference in nonlinear
models [Moradkhani et al., 2005a, 2005b]. Hence, the
SU_EnKF should be used prudently [Moradkhani et al.,
2005a, 2005b; Young, 2002].

[18] To better approximate the covariance between states
and parameters, here we propose a partitioned update
scheme (called PU_EnKF hereafter). This scheme parti-
tions the parameters into several types according to their
sensitivities, and each type of parameter is updated sepa-
rately within m loops (here m is the number of parameters
or the number of parameter types to be estimated). A flow-
chart of this scheme is provided in Figure 1. After the states
and parameters are initialized, the mean of each parameter
is calculated with equation (4), and then the procedure goes
into loops of joint estimation. In each loop, the state is fore-
casted using equation (1), but conditioned only on one tar-
get type of parameter (evolved with the kernel smoothing
method, equations (3–5)) while the other parameters are
prescribed with their means. Specifically, the parameter
vector ðki

j;tÞ has three parts: The first is the means of the
newly updated parameters from the prior loops at the cur-
rent time step t ; the second is the target type of parameter
to be updated at the current loop; and the third is the means
of the parameters estimated at the previous time step t21.
The forecast error covariance Pt and the Kalman gain Kt

are computed based on the evolved parameters and all
dynamic states. Subsequently, the target type of parameter
is appended into the state vector and all parameters in this
type are jointly updated. Through the m loops, all types of
parameters are estimated along with m ensembles of states.
The optimal estimate of each state can be approximated by
the average of all the members from the m ensembles.

[19] Note that, when the parameters exhibit spatial vari-
ability represented in computational units or grids (e.g., the
curve number (CN2) in the SWAT model), the number of
loops (m) can be set as the number of parameter types to be
estimated instead of the number of parameters, and each
type contains a number of parameters corresponding to the
computational units. In total, there are m 3 n model runs,
since each of the m loops employs n model runs that corre-
spond to the current target type of parameters. Accordingly,
there are m 3 n realizations for dynamic states, but n real-
izations for the parameters. The group of n realizations for
one type of parameters is regarded as a subensemble.
2.3.2. Comparison of PU_EnKF and SU_EnKF

[20] To further distinguish the advantages of PU_EnKF,
we explain the difference between PU_EnKF and
SU_EnKF in theory and in implementation. For simplicity,
equation (1) is assumed to have a state variable (x) and two
parameters (h1, h2): xt5Mðxt21; h1; h2Þ. The observation
operator is also simplified as H 5 [1, 0] for PU_EnKF and
H 5 [1, 0, 0] for SU_EnKF.

[21] As mentioned in section 2.1, the forecast step within
SU_EnKF is expressed as:

xi2
t 5M xi1

t21; h
i2
1;t ; h

i2
2;t

� �
1ei

t; i51; ..., N (7)

[22] Then, the Kalman gain matrix is written as:

Kt5

cov ðX 2
t ;X

2
t Þ

cov ðX 2
t ; h

2
1;tÞ

cov ðX 2
t ; h

2
2;tÞ

2
664

3
775 1

cov ðX 2
t ;X

2
t Þ1Rt

(8)

where N is the ensemble size; cov(�) denotes the covariance
that is computed from the ensemble of the state (i.e., X 2

t )
and of the two parameters (i.e., h2

1;t and h2
2;t) ; and Rt is the

measurement error covariance.
[23] For the PU_EnKF scheme, according to the frame-

work in Figure 1, the state-parameter estimation procedures

Figure 1. Flowchart of the PU_EnKF (n is the subensem-
ble size; m is the number of parameters or the number of
types of parameters to be estimated; L is the length of the
time period; and the other symbols are explained in the
text).
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are conducted by two iterative loops with respect to the two
parameters. For h1 estimation, the forecast step is:

xi2
1;t5M xi1

1;t21; h
i2
1;t ; h

1
2;t21

� �
1ei

t; i 51; ÷; N (9)

[24] And the associated Kalman gain matrix is written
as:

K1;t5
cov ðX 2

1;t;X
2
1;tÞ

cov ðX 2
1;t; h

2
1;tÞ

" #
1

cov ðX 2
1;t;X

2
1;tÞ1Rt

(10)

[25] The new estimate of h1, with this Kalman matrix,
can be obtained at the update step similar to equation (2),

and its updated ensemble mean h1
1;t is used in the second

loop for h2 estimation:

xi2
2;t5M xi1

2;t21; h
1
1;t ; h

i2
2;t

� �
1ei

t; i51; ..., N (11)

K2;t5
cov ðX 2

2;t;X
2
2;tÞ

cov ðX 2
2;t; h

2
2;tÞ

" #
1

cov ðX 2
2;t;X

2
2;tÞ1Rt

(12)

[26] So there are quite a few differences in the state fore-
cast and the Kalman matrix computation between
SU_EnKF and PU_EnKF. In SU_EnKF, the state forecast
is conditioned on all parameters, and the covariances in
equation (7), computed from the ensembles of state and
parameters, are prone to contamination. In PU_EnKF, how-
ever, the state forecast is conditioned on the target parame-
ter. An iterative manner is employed to update each
parameter and, thereby, pushes the estimates of the parame-
ters toward optimal values. Moreover, this will reduce the
degree of freedom, diminish interference from different
types of parameters, and is expected to achieve a more
accurate representation of the covariances between parame-
ters and dynamic states.

[27] Note that this partitioned update scheme may be
sensitive to the updating order of parameter types. We will
present a short discussion in section 3 of the synthetic
experiments. Moreover, it probably has high-computational
costs due to the m loops; this is especially the case when it
is used in a complex physical system that consists of a large
number of parameter types to be estimated, such as distrib-
uted hydrologic modeling. To mitigate this issue, the num-
ber of loops can be compressed by updating the sensitive
types of parameters while the other insensitive ones are pre-
scribed with prior knowledge. So a sensitivity analysis
should be performed beforehand for a large system to iden-
tify the most sensitive types of parameters. On the other
hand, the computational cost of this partitioned update
scheme is still lower than that of the standard state-
augmentation algorithm specified with ensemble size m 3 n.

3. Evaluation Using Synthetic Experiments

[28] Synthetic experiments are used to test the perform-
ance of the PU_EnKF and to compare it with the
SU_EnKF. The following experiments associated with the
SU_EnKF are deliberately prescribed with a large ensem-
ble size (m 3 n, as indicated in Figure 1), unless stated oth-
erwise. This is based on the consideration that the large

ensemble size could render better state and parameter esti-
mation due to the Monte-Carlo nature of the EnKF. Both
schemes employ the same parameter evolution algorithm in
this study, i.e., the kernel smoothing method. Moreover,
the comparison of the two schemes is done with an equal
number of model runs (m 3 n).

[29] The synthetic experiments involve a simplified
rainfall-runoff model. They are implemented in two steps.
First, a reference simulation with the model is conducted
based on a known set of parameters. The outputs from the
simulation then serve as the ‘‘truth,’’ which is used to gen-
erate observations. Second, the assimilation experiments
are performed with erroneous initial parameters. The
results of assimilation estimates are compared against the
true state and the known parameters.

3.1. A Simplified Rainfall-Runoff Model

[30] A simplified rainfall-runoff model is used that con-
cerns the surface runoff process exclusively. The runoff
generation is represented with the Soil Conservation Serv-
ice (SCS) model [Ponce et al., 1996; Rallison and Miller,
1981], and the runoff concentration is characterized with
an exponential function. This model has been widely
implemented in hydrologic models, such as SWAT
[Neitsch et al., 2001] that will be depicted in section 4. For
a basin of interest, the generated surface runoff and
the amount of water released into a main channel are
expressed as:

Qtotal;k5Qsurf ;k1Qbf ;k (13)

Qsurf ;k5 Qk1Qst;k21

� �
12exp

2surlag

tconc

� �	 

(14)

Qst;k5Qk1Qst;k212Qsurf ;k (15)

Qk5
ðRk20:2SÞ2

Rk10:8S
(16)

S5
25400

CN
2254 (17)

where Qtotal;k is the total runoff released to the main chan-
nel, consisting of the surface flow Qsurf ;k and the base flow
Qbf ;k ; Qst;k is the stored or lagged surface runoff; surlag is
the surface runoff lag coefficient ; tconc is the time of con-
centration for the basin; Qk is the generated surface runoff
on recent day k ; Rk is the rainfall depth for the day; and S
is the retention parameter determined by the curve number
CN. The surface runoff (calculated with equation (16)) only
occurs when Rk> 0.2S. In general, the curve number CN is
constrained between 30 and 100.

3.2. Assimilation Setup and Results

[31] In order to further simplify this synthetic experi-
ment, we focus on only two parameters, surlag and CN,
because the two are quite sensitive to the rainfall-runoff
relationships. Moreover, the time of concentration is set as
tconc516:0h, and the base flow is specified with a constant
value Qbf ;k55:0. So the total runoff can be simply written
as Qtotal;k5f ðQst;k21;Rk ; surlag;CNÞ, in which the rainfall
Rk as a driving force is from measurement records. Thus,
the runoff process is a nonlinear response to the driving
force of rainfall. Figure 2 (top) plots a typical response,
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which is produced by the reference simulation given a set
of parameter values (Table 1).

[32] In the PU_EnKF assimilation, we adopt three update
loops (m 5 3) to include an individual update for the state
(Qst;k and Qtotal;k) because of the simplicity of the equation
and affordable computational cost. The subensemble size is
n 5 80 within each update loop, and the parameter estima-
tion order is {CN, surlag}. Accordingly, the ensemble size
for the SU_EnKF assimilation is prescribed as 240 (m 3
n 5 240). As mentioned before, the storage space in the
SU_EnKF is much larger than that in the PU_EnKF for this
treatment. The smoothing factor for the two schemes (equa-
tion (3)) is set as a 5 0.99 and h5

ffiffiffiffiffiffiffiffiffiffiffi
12a2
p

, empirically. The
ensemble spread is inflated by h 5 1.0 if the standard var-
iance of parameters is smaller than 0.05 times the prede-
fined width (Table 1). The estimation error of the state is
calculated using the mean of the ensemble minus the true
values. The root mean square error (RMSE) and the mean
absolute error (MAE) are computed with respect to the last
2500-step estimates of total runoff. The other setups are
exhibited in Table 1. Although the initial realizations of
parameters are obviously biased compared to the true

values in this synthetic case, please note that parameter
bias is not necessary for the PU_EnKF or the SU_EnKF.

[33] Figure 2 plots the state estimation errors. The
PU_EnKF scheme renders relatively small errors compared
to the SU_EnKF. This fact is also indicated by the smaller
RMSE and MAE, shown in Table 1. Moreover, the
PU_EnKF scheme provides desirable estimations for both
parameters that approach true values; whereas, the SU_EnKF
scheme gives unstable estimations for the parameter CN
(Figure 3). In the parameter estimation process, the two
assimilation schemes adjust the model parameter estimates as
a response to the peak-runoff occurrences, such as at the
200th and the 520th time step. However, the magnitude of
adjustment is different within the two assimilation schemes
because of the difference in the representation of the state-
parameter covariances.

[34] For the SCS model, as expressed within equations
(6–10), the generated surface runoff positively relates to
the two parameters, especially with strong correlation to
the parameter CN, similar to the SWAT model taking the
parameter CN2 as a dominant parameter in surface runoff
generation [Neitsch et al., 2001; Holvoet et al., 2005]. This

Figure 2. The precipitation and the corresponding true runoff series, and the estimation errors of runoff
from the two assimilation schemes. The gray shaded areas correspond to 95 percentile confidence
intervals.

Table 1. Reference and Assimilation Setups and the Assimilated Resultsa

Integrations

Initial Setting
Noise

Variance Final Estimates

RMSE of Qtotal MAE of QtotalCN Surlag Qst,0 Q R CN surlag

Reference 75.0 4.0 10.0
PU_EnKF U(65.0, 98.5) U(0.1, 13.0) N(4.0, 6.02) 2.0 0.2 (74.56, 1.552) (3.51, 0.932) 0.014 0.011
SU_EnKF U(65.0, 98.5) U(0.1, 13.0) N(4.0, 6.02) 2.0 0.2 (72.07, 2.012) (4.23, 0.842) 0.023 0.018

aQ and R are the noise variances for modeling and observations; final estimates of parameters are represented with means and variances in the brackets;
and RMSE and MAE denote the root mean square error and the mean absolute error of the 800-step estimates of X, respectively. U and N indicate the uni-
form and normal distribution, respectively.
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property is reasonably characterized by the PU_EnKF. As
shown in Figure 4, in the PU_EnKF experiment, the corre-
lation coefficient between the Qtotal and the parameter CN
is around 0.68 after 200 steps, and the correlation coeffi-
cient between the Qtotal and the parameter surlag is always
positive with an average of 0.05. In contrast, the SU_EnKF
renders negative correlations in some periods, with aver-
ages around zero, for the Qtotal with the two parameters.
Thus, the SU_EnKF exhibits inconsistent and spurious cor-
relations with respect to model formulation. This inconsis-
tency stems from the parameter interference when the two
parameters are added to the state vector and updated simul-
taneously. However, the PU_EnKF can mitigate this issue
owing to its partitioned update scheme for model
parameters.

3.3. Verification of the Partitioned Iteration Update
Scheme

[35] There is a concern that the advantage of PU_EnKF
might come from its three times of data assimilation, not
from its partitioned iteration scheme, thereby reducing the
parameter biases. To verify such an advantage of the
PU_EnKF, we intentionally design two scenarios based on
the SU_EnKF scheme instead of the PU_EnKF scheme.

One is a multiassimilation scheme in which the observation
information is assimilated m times (here m 5 3) at each
time step, and all states and parameters jointly undergo the
forecast and the update steps in an iterative manner. The
only difference between this multiassimilation scheme and
the PU_EnKF scheme is that the former updates all param-
eters and states jointly, similar to that done in SU_EnKF,
but the latter forecasts the state and updates each parameter
separately. The other scenario adopts a spin-up scheme for
data assimilation. The forecast-update procedures using the
SU_EnKF scheme are run through the entire period (3000
days in this study) for m times, while the parameter esti-
mates at the end of the previous data assimilation are used
to initiate the next data assimilation. In this scenario, the
initial biases of parameters are expected to be reduced. For
a fair comparison, the same number of ensemble members
is used in those scenarios as in the PU_EnKF experiment,
i.e., n 5 80.

[36] Figure 5 shows the results from the multiassimila-
tion scheme. The trajectories of parameter estimations fluc-
tuate around the true values of parameters. The parameter
CN estimation is not acceptable due to the difference from
its true value. It is even not as acceptable as the SU_EnKF
scheme with large ensemble size (right column of Figure
3). Figure 6 shows the parameter estimation from the spin-
up assimilation scheme. The final spin-up estimations with
the SU_EnKF present better estimates than the first.
Actually, the third spin-up estimation shows similar trajec-
tories to the second (not shown) with a small improvement;
whereas, there is no notable improvement for the state esti-
mation in the final assimilation (not shown) relative to the
data assimilation with a large ensemble size (i.e., 240) but
without spin-up (Figure 2).

[37] Therefore, the multiassimilation scheme fails to
achieve the true or the optimal values of parameters. More-
over, updating all parameters repeatedly m times at each
assimilation step is not a good strategy for parameter esti-
mation in hydrological models partly due to the parameter
interference, as stated in section 2.3. The capability of the
SU_EnKF scheme for state and parameter estimation is

Figure 3. Estimation processes of parameters in the simplified rainfall-runoff model using the two
assimilation schemes: (left) the PU_EnKF and the (right) SU_EnKF. The gray shaded areas correspond
to 95 percentile confidence intervals.

Figure 4. Correlation coefficients between the total run-
off (Qtotal) and the two parameters (surlag and CN).
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limited even with spin-ups to reduce the initial biases of
parameters. On the other hand, these scenarios demonstrate
that the effectiveness of the PU_EnKF scheme stems from
its partitioned iteration scheme, and that the initial biases
of parameters may not be influential in the data assimilation
performance.

3.4. Effect of the Parameter Evolution Algorithm

[38] The performance of state-parameter estimation
would be impacted by the parameter evolution algorithm.
To examine the effect of parameter evolution, i.e., the ker-
nel smoothing, we designed a scenario by removing the
kernel smoothing in the PU_EnKF scheme. The parameters
are updated along with the state variable. Moreover, we

defined the other scenario in which the parameters are
evolved using the random walk process (equation (3)). In
this parameter evolution algorithm, zero-mean Gaussian
random perturbations are added to the parameters after the
assimilation update, and their standard variances are set as
2.0 and 0.2 for CN and surlag, respectively.

[39] Figure 7 shows the results from the above two sce-
narios. When the kernel smoothing is removed, the ensemble
spreads (indicated by the confidence interval) of parameters
quickly shrink, and there is no obvious improvement for
parameter estimation even after the 190th assimilation time
step. The estimations for the two parameters do not capture
their true values. When the random walk evolution of
parameters is used, however, the estimates of parameters
approximately agree with the true values, especially for the
parameter CN; for surlag, the estimates fluctuate with the
assimilation processes.

[40] Therefore, the PU_EnKF without parameter evolu-
tion presents an unfavorable situation due to the ensemble
spread shrinkage. If the ensemble spread shrinkage occurs,
the estimates of parameters cannot be improved and be
reactivated from a suboptimal value. Random walk evolu-
tion is a better alternative by perturbing the ensemble,
though it causes discontinuities in parameters and the loss
of information. A comparison with the previous results
shown in Figure 3 indicates that the parameter evolution
with the kernel smoothing performs best among the three
for parameter estimation within the PU_EnKF; this is
because a small perturbation is employed in the kernel
smoothing while the ensemble mean and variance are pre-
served. The discontinuity caused by such a small perturba-
tion is constrained within a reasonable range by adjusting
the parameter a. So this kernel smoothing is a compromise
algorithm for parameter evolution. We also implemented
the random perturbations for parameters in the SU_EnKF
scheme. The results (not shown) are either better or worse
than those from the kernel smoothing algorithm, but they
are not as good as those from the PU_EnKF. Hence, the
combination of this evolution algorithm with the PU_EnKF
is a preferable strategy for state-parameter estimation.

Figure 5. Parameter estimation using the multiassimila-
tion scheme: all parameters and states are updated three
times at each time step. The gray shaded areas correspond
to 95 percentile confidence intervals.

Figure 6. Parameter estimation using the SU_EnKF with three runs of spin-up data assimilation. Only
(left) the first and (right) the third spin-up estimations are shown. The gray shaded areas correspond to
95 percentile confidence intervals.
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3.5. Ordering Effect of Parameter Estimation

[41] The order of parameter estimation in updating loops
may influence the performance of data assimilation due to
the iterative manner in the partitioned update scheme. Here
we present a brief discussion of this problem. The order of
the two parameters is exchanged, i.e., {surlag, CN}, to ana-
lyze the ordering effect.

[42] As shown in Figure 8, the PU_EnKF with different
parameter-estimation orders also yields acceptable parame-
ter estimates, indicating the robustness of the PU_EnKF.
The assimilation in this adjusted order provides a better
estimation than did the previous ordering (Figure 8 versus
Figure 3), especially for the CN estimation. The possible

reason for this improvement is that the correct estimate of
the less-sensitive parameter (i.e., the surlag), obtained from
the previous update, will facilitate the estimation of sensi-
tive parameters (i.e., the CN). So in separate update loops
of the PU_EnKF, it is preferable to update parameters in
order of increasing sensitivity. This could be regarded as a
general suggestion instead of a strictly validated conclusion
as the ordering effect may be problem-dependent.

4. Evaluation Using a Distributed Hydrologic
Model

[43] We couple the PU_EnKF with the SWAT model
and apply this assimilation system to characterize the
rainfall-runoff process of a real basin. We focus on the
streamflow estimation on account of data availability. In
addition to comparing the results from the data assimilation
period, the estimated parameters are further validated for
hydrologic prediction using a single model run.

4.1. Study Area and Data Availability

[44] The Zhanghe river basin is an agricultural irrigation
area in Hubei Province, China (Figure 9). It covers about
1129 km2, of which the cultivated area accounts for 59%,
followed by forest (16%), bare land (10%), water bodies
(9%), and urban areas (6%). Intense human activities
including cultivation, irrigation, and drainage make water-
cycle representation difficult and present large uncertainties
for hydrologic modeling.

[45] Daily streamflow time series, from the years 2003 to
2006, are available from four gauges, marked as A, B, C,
and D; gauge D is at the outlet of the basin (Figure 9). Five
daily precipitation series from the period of 2002 to 2006
are used. Moreover, daily temperature, radiation, wind
speed, and relative humidity from January 2002 to Decem-
ber 2006 are obtained from the Tuanlin Experiment Station.
Land-use data with a resolution of 14.25 m were derived
from remote-sensing data (Landsat ETM1) [Cai, 2007].
Moreover, the soil map with soil properties was obtained
from the local agriculture department. Although the prior

Figure 7. Results from the PU_EnKF without kernel smoothing (left) and with random walk evolution
(right) for parameters CN and surlag. The gray shaded areas correspond to 95 percentile confidence
intervals.

Figure 8. Parameter estimation processes using the
PU_EnKF scheme after adjusting the estimation order. The
gray shaded areas correspond to 95 percentile confidence
intervals.
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(default) values of model parameters are derived from the
land use and the soil map, they should be further calibrated.

4.2. Distributed Hydrologic Model: SWAT

[46] SWAT is a basin-scale distributed hydrologic model
originally developed by the USDA Agricultural Research
Service [Arnold et al., 1993]. For modeling purposes, a basin
is partitioned into multiple subbasins, which are then further
divided into hydrologic response units (HRUs) that consist
of unique land cover, management, and soil characteristics
[Gassman et al., 2007; Neitsch et al., 2001]. The HRUs are
the basic computational units in the SWAT simulation.

[47] We select seven dominant parameters to be estimated
in data assimilation according to sensitivity analysis studies
for SWAT [Holvoet et al., 2005; Muleta and Nicklow,
2005; van Griensven et al., 2006]. Their default ranges are
determined in terms of the lookup tables [Neitsch et al.,
2001] corresponding to the specific soil and land-use proper-
ties of the Zhanghe basin. In addition to these types of
parameters, 10 hydrologic variables that underpin the model
run are selected to be updated in data assimilation. The first
nine variables (Table 3) are the dynamic states that charac-
terize the hydrologic storage status in an HRU or a subbasin,
and they will partially influence the next-day hydrologic out-
puts, i.e., the evapotranspiration (ET) in a subbasin and the
streamflow in a river channel (Qr).

[48] Based on the topography, land-use and soil types, the
Zhanghe river basin is divided into 20 subbasins and 98
HRUs. The soil column is discretized into four layers with
different soil properties. To reduce the number of parameters
associated with the four layers, the available water capacity
(SOL_AWC) of the soil is assumed to be homogenous. Con-
sequently, there are 606 parameters in total to be estimated,
and 954 variables to be updated along with data assimilation.
For the SU_EnKF assimilation scheme, the extended state
vector consists of 1560 members. For the PU_EnKF, the
extended sate vector contains 954 hydrologic variables and
98 or 18 parameters for each type. The number of loops is
m 5 7, corresponding to the selected parameters in Table 3.

4.3. Assimilation Setup

[49] The data assimilation procedures are conducted in
three successive steps. First, a well-fed model, prescribed

with default parameter values, is warmed up within a
period to initialize the model states. Second, at the start of
this period, the seven types of parameters for each HRU or
subbasin are perturbed to obtain an ensemble of samples,
and then these samples are used for ensemble simulations
given perturbed precipitation. This is referred to as the
‘‘perturbation period’’ in order to achieve a broad and con-
sistent distribution of the model states, which roughly char-
acterizes state uncertainties. The parameter samples,
assumed to be independent and Gaussian, are generated
using the Latin hypercube method [Helton and Davis,
2003; Pebesma and Heuvelink, 1999]. The Gaussian distri-
bution is used because of prior calibration with initially
guessed values in Xie and Cui [2011]. The standard devia-
tions are constrained to ensure that random samples are
within their respective ranges in Table 3. Third, after the
two preprocessing periods, the data assimilation period
begins, in which the observations are assimilated and the
modeling states are updated. In this study, the three steps
are activated with 3 year data, from 1 January 2003 to 31
December 2005. The first two steps are used for warming-
up the model, and perturbing ensemble simulations are per-
formed for the year 2003, each lasting for half of a year
(182 days for warming-up and 183 days for perturbation).
The subsequent data assimilation proceeds for 2 years,
from 2004 to 2005, to obtain optimal values of the model
parameters.

[50] To mimic the uncertainties or errors of model
inputs, states and observations, additive perturbations with
Gaussian zero-mean are adopted. The standard deviations
of the precipitation and the streamflow observations are
scaled according to their magnitudes with predefined scale
factors, and the standard deviations of two model outputs
(i.e., the Qr and SW in Table 3) are scaled to the ensemble
means from the SWAT modeling. However, the other eight
state variables in Table 3 are assumed to be free of model
errors, since these variables are estimated internally and are
difficult to prescribe with reasonable errors, and their
uncertainties are indirectly reflected in the soil water.
Therefore, there are four scale factors to be set concerning
the input-forcing (i.e., the precipitation), observed stream-
flow, the modeling soil water (SW), and streamflow (Qr).
Various combinations of factor values are evaluated by

Figure 9. (right) Zhanghe river basin, located in (left) central China.
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running the two data assimilation schemes from an experi-
ential and practical perspective. Consequently, the factor
for input-forcing is set at 0.2, and the observed streamflow
is specified at 0.08. The factors for the modeling soil water
(SW) and streamflow are set at 0.2. An overestimation of
uncertainties is preferable over an underestimation in order
to avoid the problem of converging to an incorrect solution
[Clark et al., 2008; Crow and Van Loon, 2006]. Note that
the uncertainty representation is still a great challenge in
data assimilation, and approaches are emerging that are
worth considering, such as adaptive filtering techniques
[Crow and Reichle, 2008; Reichle et al., 2008].

[51] Since only four sites of observed streamflow are
available to update the states and parameters of 20 subba-
sins and 97 HRUs, spurious correlations between states and
parameters probably occur due to long distances and impair
the performance of data assimilation. To remedy this issue,
the covariance localization technique [Reichle and Koster,
2003] is used to suppress correlations beyond a certain dis-
tance. The basin is divided into four subregions based on
the subbasin distribution (Figure 10), and the states and
parameters within each region are updated by assimilating
streamflow observations from the associated gauge. It is
important to mention that runoff and streamflow move
through land surface and rivers, from the upper subbasins/
rivers to the lower ones, so the observations at a station
usually correlate with the states and parameters within its
upper subbasins and rivers. Therefore, the observation is
used to update the upper and the nearby subbasins. The
states and parameters from different subregions are
assumed to be uncorrelated for localization.

[52] For the PU_EnKF assimilation, the order of parame-
ter estimation is arranged as {ESCO, surlag, GWQMN,
ALPHA_BF, CH_K, SOL_AWC, CN2}, in which the most

sensitive parameters (i.e., the SOL_AWC and the CN2) are
estimated in the last iterations according to the suggestion
in section 3.3. Moreover, a naive constrained method
[Wang et al., 2009] is imposed on the states and parameters
to avoid violating relevant physical laws or constraints.
The smoothing factor (in equation (3)) is a 5 0.99. Like the
synthetic case in section 3, the ensemble spread is inflated
by h 5 1.0 if the standard variance of the ensemble is
smaller than 0.05 times the predefined width (Table 2).

[53] In order to compare the performance of the
PU_EnKF and the SU_EnKF on an equal footing, their
ensemble sizes are set to 80 and 560, respectively. Note
that there are seven loops for the assimilation integration
with the PU_EnKF. The performance of data assimilation
is evaluated using the time series of the estimation error of
streamflow, which is the difference between the ensemble
means and the observations (the means minus the
observations).

4.4. Results of Data Assimilation

[54] Figure 11 plots the estimation errors of streamflow
for the four measurement sites. It is immediately apparent
that the PU_EnKF algorithm provides much better esti-
mates of streamflow than the SU_EnKF algorithm, as indi-
cated by the magnitude of error time series, the RMSEs,
and the MAEs. Moreover, the PU_EnKF algorithm shows
little biased tendency in the estimation as the positive and
negative errors appear alternately; whereas, the SU_EnKF
algorithm underestimates the streamflow, especially for the
peak flood flow. This underestimation may be primarily
attributed to the biased parameter estimation.

[55] Figure 12 shows spatial distributions of the final esti-
mates of the parameter CN2 (CN2 is the dominant parameter
in SWAT, as stated previously). They are mapped with
respect to the spatial distribution of land use and soil, since
HRUs in SWAT do not hold specific spatial sites. The esti-
mates from the PU_EnKF and the SU_EnKF obviously dif-
fer from the initial estimates. The former provides relatively
modest, or possibly optimal, estimates. However, the
SU_EnKF scheme produces larger estimates, which will
lead to significantly biased estimation of peak flow. We have
also performed and examined open-loop ensemble simula-
tions that are conditioned on the perturbed parameters and
precipitation, but without using observations to calibrate the
simulations. Similar to the SU_EnKF, the open-loop integra-
tions also exhibit large errors for peak flow estimation (the
results not shown).

[56] To examine the updating process of parameters, we
randomly chose an HRU and drew a group of parameter
ensembles. Figure 13 exhibits a typical estimation process of
CN2 that is chosen from the 90th HRU in subbasin 18. The
ensemble estimates display broad spreads at the beginning,
which then diminish as assimilation proceeds, but maintain
stable levels after several hundred assimilation steps. In the
updating process, the distribution of the ensemble members
almost maintains Gaussian properties, as indicated by histo-
grams. This favorable distribution partly benefits from the
kernel smoothing method for parameter evolutions. More-
over, the diminishing phenomenon of the spread is further
indicated by a global ensemble spread that is the square root
of the mean variances of all the parameters in a type [Chen
and Zhang, 2006]. As shown in Figure 14, the global

Figure 10. Four subregions divided based on subbasins
for localization.
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ensemble spreads become more or less stable approximately
after 600 steps for the SU_EnKF and 80 steps for the
PU_EnKF, which means that the data assimilations have
achieved stable estimations for parameters, and there will be
no significant improvement in subsequent assimilation steps.
This suggests a potential application of using short-period
observations to estimate hydrologic parameters as indicated
by Xie and Zhang [2010], particularly using the PU_EnKF
scheme.

4.5. Validation of the Parameter Estimates

[57] Although the two assimilation schemes achieve very
different estimates of parameters, it is difficult to explain
these estimates within the associated physical context,
since SWAT is a conceptual distributed model. To evaluate
these estimates of parameters, we design a separate valida-
tion in which model predictions are compared against the
observation data.

[58] By setting the model parameters with the final esti-
mates, we conduct a single-run streamflow prediction
rather than an ensemble prediction, in order to represent a
conventional case of model prediction. The prediction is
performed for the period from 1 January 2006 to 31 Octo-
ber 2006, because of the data availability from the four
streamflow gauges. Moreover, uncertainties posed by both
the precipitation and the model structure are not consid-
ered. We compare results from three different parameter
sets, i.e., the estimates from the PU_EnKF and the

SU_EnKF, and the initial guess that is used to produce
parameter realizations before data assimilation.

[59] Figure 15 only shows the results from the period of
1 April 2006 to 31 October 2006, since, in the first 3
months, the basin is in a dry state, and the three simulations
do not produce appreciable distinctions. The parameter set
from the PU_EnKF produces relatively small errors for
peak flow predictions, as well as for base flow, while the
parameter set from the SU_EnKF imposes much larger
streamflow errors. Moreover, the results provided by the
simulation with the initially guessed parameters apparently
depart from the observed trajectories. The RMSEs exhib-
ited in Figure 15 also illustrate the improvements achieved
by the two assimilation schemes. At the gauge at the basin
outlet (Gauge D), for example, the RMSEs have been
reduced from 6.731 for the initial-guess scenario, to 4.888
for the SU_EnKF and to 2.393 for the PU_EnKF. These
improvements are attributable to proper parameter esti-
mates, which further demonstrate the capability of the
PU_EnKF for state-parameter estimation.

5. Summary and Conclusions

[60] The EnKF with state augmentation is susceptible to
performance degradation and leads to unsuccessful state-
parameter estimation, particularly when the augmented
state vector of distributed hydrologic models is of a high
dimension. This degradation is primarily caused by spuri-
ous correlations for the nonlinear response of hydrologic
processes. To capture relatively accurate correlations
between states and parameters, we proposed a partitioned
update scheme (i.e., the PU_EnKF) according to parameter
types with a repeated forecast and assimilation procedure.
This scheme was demonstrated with a synthetic case and a
real-world case using a distributed hydrologic model
(SWAT).

[61] The results from the synthetic experiments clearly
showed that the PU_EnKF performs well in state and
parameter estimation; in particular, the parameter estimates
are close to their truths after finite assimilation steps. The
PU_EnKF exhibits its effectiveness that primarily benefits
from its partitioned forecast-update scheme rather than
the multiassimilation scheme. The combination of the
PU_EnKF algorithm and the kernel smoothing scheme for
parameter evolution is a preferable strategy for state-
parameter estimation. Moreover, the performance of the
PU_EnKF is robust to the parameter estimation ordering.
In contrast, the SU_EnKF provides unstable parameter esti-
mations due to biased correlation representation, even if all
parameters are updated repeatedly at each time step by

Table 2. Model Parameters to be Estimated in Data Assimilation

Parameter (Type) Description Scale Process Min Max

CN2 SCS runoff curve number for moisture condition II HRU Runoff 35.0 98.0
CH_K Effective hydraulic conductivity of channels alluvium (mm/h) Subbasin Channel water 0.02 76.0
SOL_AWC Available water capacity of the soil layer (mm/mm soil) HRU Soil 0.0 1.0
surlag Surface runoff lag coefficient (h) HRU Runoff 1.0 10.0
GWQMN Threshold depth of water in the shallow aquifer required for

return flow to occur (mm)
HRU Groundwater 20.0 1000.0

ESCO Plant evaporation compensationx factor HRU Evaporation 0.0 1.0
ALPHA_BF Base flow alpha factor (day) HRU Lateral water 0.0 1.0

Table 3. Dynamic Hydrologic States and Outputs to be Updated
in Data Assimilation

Variable Description Scalea

Qsufstor Amount of surface runoff stored or
lagged

HRU

Qlatstor Amount of lateral flow stored or lagged HRU
Qshall Amount of shallow water stored or

lagged
HRU

Qrchrg Amount of recharge entering the aquifer HRU
Qpregw Amount of groundwater flow into the

main channel
HRU

Wsol Amount of water stored in the soil layer
for each HRU

HRU 3 Nlayb

Wr Amount of water stored in the reach Subbasin
Wb Amount of water stored in the bank Subbasin
SW Amount of water stored in soil profile Subbasin
Qr Amount of water flow out of reach

(Streamflow)
Subbasin (Reach)

aThe hydrologic variables are with respect to the scales to reflect the
related hydrologic processes.

bHere Nlay is the number of soil layers (Nlay 5 4 for this study), and
HRU 3 Nlay means that the soil profile of each HRU is partitioned into
Nlay layers.

XIE AND ZHANG: A NOVEL SCHEME FOR STATE-PARAMETER ESTIMATION

7361



Figure 11. Estimation error of streamflow for the four observation stations (D, C, B, and A, from top
to bottom): (left) the PU_EnKF and (right) the SU_EnKF.

Figure 12. Estimation of parameter CN2 values for all HRUs, mapped to land use and soil distribution:
(a) initial realization for data assimilation; (b) estimation by PU_EnKF; and (c) estimation by
SU_EnKF.
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assimilating the same observations. Although the initial
parameter bias is constrained after spin-up assimilation, the
SU_EnKF is unable to overcome the instability of parame-
ter estimation.

[62] In the real-world case, the PU_EnKF provides
smaller errors for streamflow estimation than does the
SU_EnKF, particularly for the peak flow estimation. These
errors mainly result from biased parameter estimation. Typ-
ically, as the most important type of parameters in SWAT,
the parameter values of CN2 have been overestimated by
the SU_EnKF compared to the reasonable estimates of the
PU_EnKF. Moreover, stable estimates of parameters can
be achieved after a few assimilation steps because of the
steady ensemble spread. This also suggests the potential of
using short-term observations to obtain appropriate esti-
mates of parameters.

[63] Even though PU_EnKF likely performers better
than SU_EnKF for nonlinear problems, they may have sim-
ilar performance for linear problems. The effectiveness of
SU_EnKF has also been illustrated in the literature using
hydrologic models of low-dimensional state-parameter vec-
tors, such as lumped hydrologic models [Dechant and Mor-
adkhani, 2011; Leisenring and Moradkhani, 2011; Wang
et al., 2009] and land surface models [e.g., Nie et al.,
2011]. In the synthetic experiments with the simple model

in this study, the SU_EnKF also provides acceptable esti-
mation for parameters and states in some measures when
comparing the estimation errors with the given model and
observation errors. Thus, the SU_EnKF can be optional for
low-dimensional problems; however, it may suffer from
overconfidence and divergence for state and parameter esti-
mation [DeChant and Moradkhani, 2012]. Note that the
particle filtering is also useful for state-parameter estima-
tion and has been demonstrated in a few lumped hydrologic
models [Moradkhani et al., 2005a, 2005b; Moradkhani
and Sorooshian, 2008]. As a non-Gaussian technique, its
performance highly depends on the dimension of the mod-
els and the observation errors, and it is restricted by its
computational cost [Han and Li, 2008]. For distributed
hydrologic models, Xie and Zhang [2010] documented the
success of the SU_EnKF, but only one (type) parameter
with respect to surface runoff was considered in the estima-
tion, i.e., CN2 in SWAT. Considering various parameters in
distributed hydrologic models, the PU_EnKF employs an
iterative update scheme to reduce the degree of freedom,
thereby correctly representing the relationship between states
and parameters. Therefore, the PU_EnKF is a beneficial
alternative data assimilation scheme for high-dimensional
problems.

[64] Despite its success, the PU_EnKF, like any other
EnKF-based algorithm, is prone to suboptimal solutions of
parameters in the real-world cases because it uses a limited
number of random realizations to approximate the model
and observation errors. It is difficult to thoroughly over-
come the problem of parameter equifinality, which means
that different parameter values may fit the data equally well
[Beven, 2006; Beven and Freer, 2001b]. For a real-time
ensemble prediction, one remedy to this problem is the
ensemble simulation/prediction [Duan et al., 2007] that is
contained in the framework of EnKF. Moreover, this
scheme is still restricted by the model and observation error
estimation. This can be alleviated by calibrating the error
information or by adaptive filtering algorithms [Crow and
Reichle, 2008; Reichle et al., 2008]. In addition, the effec-
tiveness of this scheme may vary with different problems;
for long-term data assimilation, it may be computationally
expensive due to its repetitious assimilation. In this case, a
sensitivity analysis is recommended beforehand to select
the most influential parameters to be estimated. The

Figure 13. Typical trajectories of CN2 estimation using the (left) PU_EnKF and the (right) SU_EnKF,
and the histograms at the first, 200th, and final steps. The dark gray lines are ensemble members, and the
red and blue thick lines are ensemble means.

Figure 14. Evolutions of the global ensemble spread
(ENSP) of parameters (CN2 and SOL_AWC). Representa-
tive results are shown, while the others exhibit similar
processes.
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PU_EnKF scheme could be a general tool for other distrib-
uted hydrologic models, and not just for the SWAT model
discussed in this paper. However, this requires further
investigation, using other hydrologic models for real-world
hydrologic problems.
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