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Although precipitation is

important to climatology,

hydrology, and agricultural

research, the spatial

pattern of precipitation

over the Tibetan Plateau

is difficult to determine

because of complex

surface conditions and a

sparse rain gauge

network. In the present article, a method we named

FETCH_OCK—based on a combination of Yin et al’s Fetch

method (2008) and ordinary cokriging (OCK)—is proposed; it

was used to estimate monthly summer precipitation over the

Tibetan Plateau, which has limited rain gauge observations

and a restricted satellite precipitation dataset. First, the

monthly ground observations measured by rain gauges were

interpolated using OCK, with a digital elevation model (DEM)

as the covariant. Second, the spatial variability of the

precipitation monitored by satellite was extracted from the

Climate Prediction Center morphing (CMORPH) satellite

precipitation dataset by calculating a parameter (FETCH)

developed from Yin et al’s Fetch parameter. Finally, the

precipitation datasets estimated by OCK were corrected by

the FETCH parameter derived from the CMORPH satellite

precipitation dataset. Summer (June to August) precipitation

over the Tibetan Plateau from 2005 to 2009 was estimated

using this model. The precipitation datasets estimated by

FETCH_OCK were tested using ground observations from 55

independent rain gauges. The results indicate that the

FETCH_OCK model not only is an improvement compared with

the input precipitation datasets (OCK and CMORPH) but also

performs better than other widely used precipitation datasets,

including universal kriging with DEM as a covariant and

Tropical Rainfall Measuring Mission 3B43. The present study

aims to correct the smoothing effect of kriging interpolation

models and to provide a more accurate precipitation dataset

for the Tibetan Plateau.

Keywords: Precipitation; cokriging; digital elevation model

(DEM); Climate Prediction Center morphing (CMORPH); data

fusion; FETCH_OCK; Tibetan Plateau.
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Introduction

The Tibetan Plateau is the highest region in the world,
with elevations generally higher than 4000 m above mean
sea level. This region is an important source of several
major rivers, such as the Yangtze, Yellow, Lancang–
Mekong, Salween–Nujiang, Ganges–Brahmaputra, and
Indus, so the precipitation over this region is of critical
importance to the environment and livelihood of millions
of people along these rivers (Yin et al 2008; Li and Shao
2010; Wu and Chen 2012). Therefore, it is important to
obtain accurate precipitation data over this region to
understand the spatial and temporal variation
characteristics of precipitation.

A rain gauge can provide accurate precipitation data
at the gauge location, but the rain gauge network on the
Tibetan Plateau is still sparse because of natural

conditions and high elevation, making it difficult to
estimate the precipitation over this region. Various
methods have been developed to analyze the spatial
pattern of precipitation with ground observations
measured by rain gauges (Villarini and Krajewski 2008;
Michaelides et al 2009; Ward et al 2011), and extensive
research has shown that geostatistical interpolation based
on geographical information systems can provide more
accurate precipitation estimates than other interpolation
or regression models (Lloyd 2005; Bostan et al 2012). In
geostatistical interpolation models, the precipitation over
ungauged areas is interpolated from nearby samples and a
semivariogram is calculated by the semivariance of each
point pair (Goovaerts 1998; Diodato et al 2010; Kebaili
Bargaoui and Chebbi 2009). In recent decades, the
thermal and dynamic forcing mechanisms of topography
on the atmospheric circulation and precipitation
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distribution have been widely discussed, and elevation has
been reported to have potential to improve the accuracy
of geostatistical models when integrated into the
interpolation process (Sokol and Bližňák 2009; Um et al
2011). Goovaerts (2000) and Lloyd (2005) established
several multivariate geostatistical interpolation models by
integrating elevation into the kriging model, including
cokriging, kriging with an external drift, simple kriging
with a locally varying mean, and ordinary cokriging
(OCK). Their research showed that when elevation is
closely related to precipitation, the precision of the
kriging model can evidently be improved. But these
gauge-based analyses largely depend on the density and
configuration of the rain gauge network, so for
undeveloped or remote areas with a sparse rain gauge
network, these methods are insufficient to estimate the
spatial pattern of precipitation (Xie and Xiong 2011).

Another reliable method for acquiring precipitation
data is reproducing the physics of precipitation
formation. A number of physical models based on
parameterization of microphysics have been established
to estimate and predict precipitation by considering the
microphysical processes of precipitation, temperature,
and humidity and the effects of clouds on condensation
and evaporation (Tripoli and Cotton 1980; Zhao and Carr
1997; Rotstayn 1998). But the application of such methods
would make a set of model equations too complicated,
and many necessary datasets are hard to obtain (Akimov
2004). With the development of meteorological satellite
networks, information from spaceborne sensors has
greatly expanded the coverage of ground observation and
provides an effective approach to monitoring the
precipitation over remote areas. Satellite precipitation
datasets are derived from brightness temperature
observed by infrared, microwave, or both types of sensors
using statistical or physical retrieval algorithms. The
visible and infrared satellite data can monitor the
temperature on the tops of clouds (Arkin and Meisner
1987; Brown 2006; Haile et al 2010), while the microwave
observations can reflect the thermal emission of
raindrops at low frequency (10–37 GHz) and the
scattering of upwelling radiation from Earth into space
(85 GHz and higher) (Ferraro 1997; Grody 1984; Kidd and
Levizzani 2011).

Based on these discoveries, a number of satellite-
driven precipitation models have been established with
the infrared and microwave data. Arkin and Meisner
(1987) estimated the precipitation with infrared satellite
observation. Grody (1991) proposed the scatter index
method based on the differences in the scattering effect
of the hydrometeors for different microwave channels.
Furthermore, a series of studies has been conducted to
merge the information from infrared and microwave
satellite observations to provide precipitation data with
high spatial and temporal resolution (Xie and Arkin
1996, 1997; Grimes et al 1999; Gruber et al 2000).

However, the relationship between cloud physical
variables and precipitation varies in different areas, so
the precipitation datasets derived from satellite
observations usually contain varying regional biases and
random errors, which limits the use of satellite
precipitation data in many scientific applications
(Turlapaty et al 2010; Xie and Xiong 2011), especially in
mountainous areas with complicated underlying surfaces
(Ward et al 2011).

As part of the project conducted by the China
Meteorological Administration to provide an accurate
precipitation dataset over the Tibetan Plateau, this study
developed a new model to estimate the precipitation over
the Tibetan Plateau with limited rain gauge observations
and a satellite precipitation dataset. We named this model
FETCH_OCK, because it combines a method we call
FETCH, based on Yin et al’s Fetch method (2008), and OCK
interpolation. Our FETCH_OCK model was established on
the assumption that small-scale spatial variability in the
precipitation monitored by satellites can improve the
results of geostatistical interpolation, which are too smooth
to present the complicated spatial pattern of precipitation
over the Tibetan Plateau. The model was used to estimate
the summer precipitation (June to August) between 2005
and 2009 over the Tibetan Plateau, with ground
observations from 133 rain gauges and the monthly Climate
Prediction Center morphing (CMORPH) satellite
precipitation data as inputs. The results were validated
using 55 rain gauge observations that were not included in
the training. The performance of this new model was
further assessed by comparing it with the precipitation
datasets generated by universal kriging (UK) and the
Tropical Rainfall Measuring Mission (TRMM) 3B43
multisource precipitation dataset.

Study area and materials

Study area

This study focused on the eastern Tibetan Plateau and the
surrounding areas, with an area of approximately 1.1
million km2, ranging from 25.5uN to 37.6uN and 86.4uE to
105.5uE (Figure 1). The special topography of
the Tibetan Plateau results in a complicated climatic
system that is different from that of surrounding areas.
The eastern part of this region is affected by the East
Asian monsoon, but the precipitation in the area is not
very high because the moist airstream from the sea travels
a long distance and is obstructed by the Hengduan
Mountains. Another source of precipitation is the Indian
monsoon from the Indian Ocean. Most of the moist
airstream is obstructed and turned into large-scale
precipitation by the Himalayas, but some of the air travels
along the Brahmaputra and brings flush precipitation to
the middle of the study area. The western region is drier
because neither the East Asian monsoon nor the Indian
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monsoon can reach it. The temporal distribution of
precipitation over the Tibetan Plateau shows apparent
seasonal characteristics, with most precipitation coming
between May and September (Shen et al 2011).

Data

Ground observation from rain gauges: The ground
observations used in the study were measured with 188
rain gauges managed by the Institute of Tibetan Plateau
Atmospheric and Environmental Science. The maximum,
minimum, and mean values and the variance in the
precipitation for each month are shown in Table 1. These
rain gauges are located in the middle and eastern parts of
the Tibetan Plateau with elevations ranging from 2437 to
4728m (as shown in Figure 1). The number of rain gauges is
too limited to accurately monitor the precipitation over this
vast plateau, but the configuration of these rain gauges is
relatively even. In this study, these rain gauge observations
were separated into a training dataset and a testing dataset:
133 rain gauges (labeled as circles in Figure 1) were
randomly selected, and the observations from these rain
gauges were used to estimate the precipitation over the
Tibetan Plateau with the FETCH_OCK model, while the
observations from the remaining 55 rain gauges (labeled as
rectangles in Figure 1) were used to assess the performance
of the model in this study.

Satellite data: The satellite precipitation datasets used in
this study included CMORPH and TRMM 3B43 V6. The
former was used as the input for the FETCH_OCK model,
while the latter was used as a comparison to assess the
performance of this new model.

CMORPH is a multisatellite precipitation dataset
produced by fusing the precipitation derived from infrared
and microwave remote sensing data. The infrared-driven
precipitation datasets with a half-hour temporal resolution
from several satellites (Meteosat, the Geostationary
Meteorological Satellite, etc) are used to estimate the
motion vectors to propagate the 3-hour precipitation
estimates derived from passive microwave data (Joyce et al
2004). A series of CMORPH precipitation datasets with
various spatial and temporal resolutions have been
developed and published to date. In this study, the 3-hour
global microwave-based precipitation with a 0.25u 3 0.25u
spatial resolution contained in the CMORPH precipitation
dataset was selected as the input for the FETCH_OCK
model. To simulate the monthly precipitation over the
Tibetan Plateau, the 3-hour CMORPH precipitation
datasets were accumulated on a monthly timescale.

TRMM 3B43 V6 consists of monthly precipitation data
generated by an algorithm whose aim is to produce the best
estimate of precipitation rates (in millimeters per hour) and
root-mean-square precipitation-error estimates based on

FIGURE 1 DEM of the study area and location of the 188 rain gauges used in this study.
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multiple independent precipitation estimates from the
TRMM Microwave Imager, Advanced Microwave Scanning
Radiometer for Earth Observing Systems, Special Sensor
Microwave Imager, Special Sensor Microwave Imager/
Sounder, Advanced Microwave Sounding Unit, Microwave
Humidity Sounder, microwave-adjusted merged
geoinfrared, and monthly accumulated Global Precipitation
Climatology Centre rain gauge analysis. These gridded
precipitation datasets have a calendar-month temporal
resolution and a 0.25u 3 0.25u spatial resolution (Condom
et al 2011; Jia et al 2011; Karaseva et al 2012). In this study,
the TRMM 3B43 V6 dataset covering the study area was
downloaded from the National Aeronautics and Space
Administration (2013). This dataset was used as a
comparison to evaluate the performance of the
FETCH_OCK model.

Digital elevation model data: The digital elevation model
(DEM) data were obtained from the international
scientific data service platform (Chinese Academy of
Sciences, Computer Network Information Center, 2013).
These data, measured by NASA and the National Imagery
and Mapping Agency, contain a set of relative datasets,
including slope, aspect, and topographic position index. In
this study, the DEM was used as the covariance in the OCK
interpolation. Because of the great extent of the study area,
it was necessary to resample the DEM from 0.001u 3 0.001u
to 0.1u 3 0.1u to reduce the computation load.

Methodology

OCK interpolation

OCK is a multivariate interpolation model derived from
ordinary kriging (Li and Shao 2010). Apart from the
sample data (rain gauge observation in this study), 1 or
more types of relative spatial data such as DEM were also
introduced into the interpolation process as auxiliary
variables (also known as covariants). The covariants
usually have a close relationship to the distribution of
precipitation. Several studies have shown that OCK with
DEM as a covariant can simulate more precisely than
other spatial interpolation models. The cokriging
precipitation estimating model with only 1 covariant
according to Goovaerts (2000) is shown in Equation 1:

Zck uð Þ~
Xn uð Þ

a~1

la uð ÞZ uað Þzl uð Þ y uð Þ{myzmz
� �

ð1Þ

where Zck(u) is the precipitation estimate result of
cokriging at an unsampled location u; n(u) is the number
of rain gauges used to simulate rainfall depth at location
u; Z(ua) is the value of the rain gauge observations at
location ua around location u; y(u) is the value of DEM at
location u; my and mz are the global means of rain gauge
observation and DEM, respectively; and la(u) and l(u) are
the interpolation weights, which were calculated by
solving Equation 2:

TABLE 1 Maximum (max) precipitation, minimum (min) precipitation, average (mean) precipitation, and variance of precipitation observed by 188 rain gauges
between 2005 and 2009.

Year Month Max (mm) Min (mm) Mean (mm) Variance

2005 Jun 303.5 3.8 99.89 63.80

Jul 596.0 20.7 151.99 96.46

Aug 440.4 4.3 144.49 86.36

2006 Jun 265.3 2.8 92.68 56.47

Jul 428.2 14.7 123.83 77.06

Aug 340.7 6.3 89.11 52.77

2007 Jun 312.1 6.3 97.85 49.79

Jul 492.6 7.3 145.19 72.48

Aug 740.5 5.8 135.88 104.58

2008 Jun 299.4 7.1 112.89 49.12

Jul 492.8 1.3 137.07 77.79

Aug 379.0 2.6 138.03 68.82

2009 Jun 341.1 0.0 97.97 68.46

Jul 613.4 10.4 144.17 99.50

Aug 473.8 2.4 129.89 62.10
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Pn uð Þ

b~1
lb uð Þgzz ua{ubð Þzl uð Þgzy ua{uð Þzm uð Þ~gzz ua{uð Þ

Pn uð Þ

b~1
lb uð Þgzy u{ubð Þzl uð Þgyy 0ð Þzm uð Þ~gzy 0ð Þ

Pn uð Þ

b~1
lb uð Þzl uð Þ~1

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where l(u) and m(u) are Lagrange parameters accounting
for the constraints on the weights; gzz(h) and gyy(h) are
the covariance functions of the rain gauge and DEM,
respectively; and gzy is the cross-semivariogram value
between rain gauge observations and DEM.

The gzz function is calculated by Equation 3:

gzz~
Xh
a~1

z uað Þ{z uazhð Þ½ �
( ),

2N hð Þ ð3Þ

where z(ua) is the rain gauge observation and N(h) is the
distance between each point pair.

The gyy function is calculated by Equation 4:

gyy~
Xh
a~1

y uað Þ{y uazhð Þ½ �
( ),

2N hð Þ ð4Þ

where y(ua) is the value of elevation and N(h) is the
distance between each point pair.

The gzy value is calculated by Equation 5:

gzy~
XN hð Þ

a~1

z uað Þ{z uazhð Þ½ � ½y uað Þ{y uazhð Þ½ �
( ),

2N hð Þ ð5Þ

where z(ua) and y(ua) are the rain gauge observation and
DEM, respectively.

In the interpolation process of OCK, self-correlation
between the point data and the covariant was considered.
Furthermore, the model considers cross-correlation
between the covariant and the sample collection, which
plays an important role in improving the precision of
ordinary kriging. If the cross-correlation between the
precipitation and the covariant is strong, the spatial
continuity patterns between the precipitation and the
covariant are similar, indicating that the covariant has a
great influence on the interpolation. However, if there is
low or no cross-correlation between the sample collection
and the covariant, the effect of the covariant is negligible
and OCK can be treated as ordinary kriging.

The FETCH_OCK model

Although OCK can derive unbiased estimates of
regionalized variables at unsampled points from the
values of the surrounding stations, this model has
significant drawbacks when it is used to simulate the
spatial pattern of precipitation over mountainous areas.

Precipitation is a complicated and discontinuous physical
process affected by local atmospheric circulation,
topographical local relief, land cover, and many other factors.
These factors usually lead to obvious small-scale spatial
variability in precipitation. Unfortunately, small-scale spatial
variability of precipitation cannot be presented by OCK
interpolation for 2 reasons. First, a dense and well-configured
rain gauge network is essential to monitor the small-scale
spatial variability of precipitation comprehensively, but the
rain gauge network in remote and mountainous areas are
usually sparse and located unevenly. Second, OCK fits the
semivariogram with minimum mean-square-error–based
methods, but all fitted curves generated by these methods are
too smooth to present the extreme spatial variability given by
the semivariogram. This shortcoming of OCK merits
significant attention on the Tibetan Plateau, where the rain
gauge network is sparse and the spatial pattern of precipitation
is severely disturbed by the complicated underlying surface
(Olea and Pawlowsky 1996; Yamamoto 2005).

Microwave remote sensing is a promising way to
overcome the drawbacks of OCK. Compared with the
limited coverage of the rain gauge network, the microwave
meteorological satellites network can cover the whole
Tibetan Plateau with high temporal resolution (3 hours).
Another important advantage of microwave remote
sensing is that microwave radiation can break through the
clouds and provide the distribution of the precipitation
particles, such as big raindrops and ice particles inside the
clouds, so the microwave-based satellite precipitation
datasets have a direct physical relationship with the real
spatial pattern of precipitation. Based on the previous
discussion, we assumed that the small-scale spatial
variability of precipitation over the Tibetan Plateau can be
observed by microwave remote sensing and reflected by
the microwave-based satellite precipitation dataset. The
FETCH_OCK model, which is aimed at correcting the
smoothing effect of OCK and providing a more accurate
precipitation dataset over the Tibetan Plateau, was
established based on this assumption. Three steps are
presented to describe the FETCH_OCK algorithm.

Step 1: The monthly precipitation measured by 133 rain
gauges was interpolated by OCK, with DEM as a covariant,
using Equations 1–5 and then resampled to 0.25u 3 0.25u,
which is the same as CMORPH. According to the
semivariogram of rain gauges calculated by Equation 3,
the semivariogram of DEM calculated by Equation 4, the
cross-semivariogram between the rain gauge and DEM
calculated by Equation 5, and the spherical model
(Equation 6) were selected to fit each variogram
(Goovaerts 2000). Equation 6 is as follows:

f xð Þ~ 1:5h=a{0:5 h=að Þ3, a§h

1,avh

(
ð6Þ
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where a is the range of the variograms and h is the
distance of the point data pairs.

Step 2: The small-scale spatial variability in the monthly
CMORPH satellite precipitation dataset was extracted by
calculating a parameter we named FETCH, because it was
developed from the Fetch parameter proposed by Yin et
al (2008). Yin et al’s Fetch parameter is used to represent
the spatial variability of an image; it is calculated by
subtracting the smoothed image from the original image
using a low-pass filter. In this study, Yin et al’s Fetch
parameter was modified by dividing their Fetch with the
smoothed image to extract the spatial variability of
CMORPH satellite precipitation datasets in the form of a
ratio. This modified parameter was renamed FETCH.

The FETCH parameter was calculated using a 3-step
algorithm. First, CMORPH was smoothed by a 3 3 3
moving window filter, which means the value of a grid in
original image was substituted with the average value of
the surrounding grids. Second, the smoothed CMORPH
was subtracted from the original CMORPH. Finally,
FETCH calculated with the result of step 2 was divided by
the smoothed CMORPH. The algorithm was described by
Equation 7:

FETCH uð Þ~ T uð Þ{

P8
i~1

T ið Þ

8

2
664

3
775
,

T uð Þ ð7Þ

where FETCH(u) is the value of FETCH in grid u, T(u) is
the value of CMORPH in grid u, and T(i) is the value of the
grids around grid u. The negative values of FETCH
indicate that the precipitation of this grid in CMORPH is
lower than that of the surrounding grids, and vice versa.

Step 3: The result of OCK (termed OCK_DEM) was
corrected by FETCH following Equation 8. As shown in
this equation, the grid in the result of OCK was multiplied
by FETCH of the corresponding grids, and then the result
was added to the original value of OCK.

FC uð Þ~FETCH uð Þ|T OCK uð ÞzT OCK uð Þ ð8Þ

Here, FC(u) is the result of FETCH_OCK in grid u,
FETCH(u) is the value of FETCH in grid u, and T_OCK(u)
is the result of OCK with DEM as a covariant.

FIGURE 2 Monthly precipitation (in millimeters) over the south Tibetan Plateau in August 2007 as
calculated by the OCK interpolation with DEM as a covariant.
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Precision evaluation

The ground observations from 55 rain gauges that were
not used in the training process were used to assess the
performance of the models in the study. Four comparison
criteria were calculated: mean absolute error (MAE), root-
mean-square error (RMSE), coefficients of determination
(R2), and sum of squares of residuals (SSE). These criteria
were calculated by Equations 9–12, respectively:

MAE~
Xn
k~1

Yk{Okj j=n ð9Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k~1

Yk{Okð Þ2
.
n

s
ð10Þ

R2~

Pn
k~1

Yk{ �YYð Þ Ok{ �OOð Þ½ �
� ��

n{1ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k~1

Yk{ �YYð Þ2
� 	�

n{1ð Þ
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k~1
Ok{ �OOð Þ2

� 	�
n{1ð Þ

s ð11Þ

SSE~
Xn
k~1

Yk{Okð Þ2 ð12Þ

where Yk is the observation measured by rain gauge k, Ok is
the precipitation estimated by amodel at the location of rain
gauge k, Y is the mean value of all rain gauge observations
and the precipitation estimate value, andO is the mean value
of the precipitation at all rain gauge locations.

Results

The spatial pattern of OCK, FETCH, and FETCH_OCK

Figure 2 shows the precipitation dataset estimated by
OCK, with DEM as a covariant (August 2007 is taken as an
example). Although the complicated topography
information was introduced into the interpolation
process, the spatial distribution of precipitation
estimated by OCK presented an evident smoothing effect.
For example, in the Himalayas, where the Indian
monsoon is seriously disturbed by the huge mountains,
there should be a dramatic fluctuation between high and
low precipitation on the southeast-facing and northwest-
facing slopes for mountain ranges across the Tibetan

FIGURE 3 Spatial distribution of FETCH in August 2007 on a 0.25u latitude–longitude grid. The circles represent the grid with
FETCH below 20.2, while the rectangles represent the grid above 0.2.
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Plateau, according to the study by Yin et al (2008). But the
spatial pattern of the precipitation estimated by OCK still
presents a continuous surface, which cannot represent
the thermal and dynamic forcing mechanisms of the
topography.

Figure 3 presents the result of FETCH in August 2007,
as derived from CMORPH satellite data. The circles and
the rectangles in this figure represented grids with
FETCH above 0.2 and below 20.2, respectively. They
indicated that the precipitation of CMORPH in these
grids showed a distinct decrease (when FETCH was
negative) or increase (when FETCH was positive)
compared with surrounding grids. As shown in Figure 3,
most of these labeled grids are located in the western part
of the study area and in the Himalayas, where the
underlying surface is complicated.

Figure 4 shows the spatial pattern of the
precipitation estimated by the FETCH_OCK model in
August 2007. It can be observed that in the middle and
eastern parts affected by the East Asian monsoon, the
spatial pattern of FETCH_OCK is similar to OCK,
because most of the values of FETCH in these regions
are relatively low. This indicates that the underlying
surface of these regions cannot disturb the spatial
pattern of precipitation seriously. But in the western and

southern parts of the study area, the precipitation
estimated by FETCH_OCK presents a seriously
discontinuous surface compared with the result of OCK,
because the spatial pattern of precipitation estimated by
OCK was corrected by the extreme spatial variability of
precipitation extracted from CMORPH satellite
precipitation datasets. Furthermore, the ranges of the
precipitation estimated by FETCH_OCK are closer to
the rain gauge observation than are the ranges of OCK.
Table 2 showed the maximum and minimum
precipitation estimated by OCK and FETCH_OCK at the
locations of the 133 rain gauges. The maximum
precipitation values of OCK_DEM and FETCH_OCK
were both underestimated, while the minimum values
were overestimated. By comparison, the maximum and
the minimum values of FETCH_OCK were closer to the
range of rain gauge measurements than those of
OCK_DEM in each month.

Validation and comparison with other precipitation datasets

In this section, the observations measured by
independent rain gauges were used to validate the results
of FETCH_OCK models. We first investigated whether
FETCH_OCK shows obvious improvement in the input
precipitation datasets (OCK and CMORPH). Performance

FIGURE 4 Monthly precipitation (in millimeters) dataset on a 0.25u latitude–longitude grid over
the Tibetan Plateau in August 2007 as estimated by the FETCH_OCK model.
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of FETCH_OCK was further assessed by comparing it
with 2 widely used precipitation datasets: UK and
TRMM 3B43.

Figure 5A–D show the R2, MAE, RMSE, and SSE,
respectively, for summer precipitation (June to August)
estimated by CMORPH, OCK, and FETCH_OCK between
2005 and 2009. It can be seen from Figure 5A that R2 in
the FETCH_OCK model was always above 0.5 and higher
than in the other 2 precipitation datasets. In some
months, the value of R2 can reach up to 0.82, which
indicates that the precipitation predicted by
FETCH_OCK correlated well with the rain gauge
observation. The RMSE of FETCH_OCK decreased to
26.76,66.77, compared with CMORPH (36.33,89.58) and
OCK (29.22,70.56). The same decrease in MAE and SSE
can be observed in Figure 5C and D. The 4 evaluation
criteria indicated that FETCH_OCK presented
substantial improvement in the precipitation estimate
over the Tibetan Plateau when compared with OCK and
CMORPH.

The R2, MAE, RMSE, and SSE, respectively, of FETCH,
UK, and TRMM 3B43 are shown in Figure 6A–D. UK is an
interpolation method that combines regression and
kriging by treating these as 2 separate, consecutive steps.
In this model, the secondary information is used to derive

the local mean of the primary attribute and then to
perform simple kriging on the corresponding residuals
(Brus and Heuvelink 2007). UK was used to estimate the
precipitation, with elevation as a covariant, and showed
better performance than other interpolation methods
in many studies (Lloyd 2005; Bostan et al 2012). The
unsampled point u was estimated by observations around
ui following Equation 13:

Zuk uð Þ~a0z
Xp
k~1

akXk uð Þz
Xn
i~1

bie uið Þ ð13Þ

where Zuk(u) is the prediction at location u, a0 is the
estimated intercept, ak are the estimated regression model
coefficients, Xk(u) are the values of independent variables,
bi are the simple kriging weights derived from the spatial
dependence structure of the residual, e(ui) is the
(observed) regression residual at location ui, p is the
number of the rain gauge observations, and n is the
number of the observations around u.

It can be observed from Figure 6 that FETCH_OCK
presented a higher value for R2, as well as lower RMSE,
SSE, and MAE, than UK with DEM as a covariant in all
months, which indicates that FETCH_OCK performed
better than UK in estimating summer precipitation over

TABLE 2 Maximum and minimum values of OCK_DEM and FETCH_OCK at the locations of the 188 rain gauges.

Year Month

Maximum (mm) Minimum (mm)

Rain

gauge OCK_DEM FETCH_OCK

Rain

gauge OCK_DEM FETCH_OCK

2005 Jun 257.4 204.06 220.99 16.5 37.49 26.88

Jul 529.0 254.01 292.23 40.4 72.75 78.45

Aug 437.6 252.03 291.08 44.7 71.00 62.26

2006 Jun 232.6 235.46 222.01 24.8 48.93 29.29

Jul 413.0 210.25 242.16 28.6 53.33 52.01

Aug 236.5 263.44 190.78 22.7 57.68 32.81

2007 Jun 246.5 168.33 205.33 12.6 51.88 45.10

Jul 314.8 283.52 310.28 48.1 70.15 59.76

Aug 740.5 437.79 555.43 40.9 61.07 34.50

2008 Jun 230.3 190.40 215.71 29.4 56.44 51.27

Jul 373.8 256.77 313.21 29.1 75.14 67.57

Aug 379.0 240.52 306.46 39.6 59.55 35.83

2009 Jun 310.6 261.46 288.72 10.5 34.40 16.04

Jul 558.2 326.95 305.78 25.9 56.51 44.27

Aug 473.8 209.37 252.03 44.2 75.67 81.89
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FIGURE 5 R2 (A), MAE (B), RMSE (C), and SSE (D) of the summer precipitation (June to August) as
estimated by CMORPH, OCK, and FETCH_OCK between 2005 and 2009.
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the Tibetan Plateau. In comparison with TRMM 3B43,
FETCH_OCK performed better in most months, except
in July 2005 and 2009, when FETCH_OCK showed lower
or similar R2 and higher RMSE, SSE, and MAE. However,

even in these months, the R2 of FETCH_OCK can reach
as much as 0.53 (July 2005) and 0.81 (July 2009), which
indicated that although the performance of
FETCH_OCK is not as good as TRMM 3B43,

FIGURE 6 R 2 (A), MAE (B), RMSE (C), and SSE (D) of the summer precipitation (June to August)
as estimated by the TRMM 3B43, UK, and FETCH_OCK models between 2005 and 2009.
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FETCH_OCK provided a reasonable spatial pattern of
precipitation over the Tibetan Plateau in the 2 months.

Discussion

The Tibetan Plateau is a special region with the most
complicated topography in the world, but the result ofOCK
with DEM as a covariant did not show the effect of
topography. This problem was caused by the low
correlation between DEM and rain gauge observations. Asli
and Marcotte (1995) demonstrated that the covariant was
worth introducing when the coefficient of determination
was above 0.4. Goovaerts (2000) came to a similar
conclusion, and later research showed that the result of
kriging can be improved only when coefficients of
determination between the primary data and the
covariance are greater than 0.75. For all months in
this study, the correlation between the rain gauge
observations and DEM was very low (the R2 in all months
are between 0.1 and 0.3; data not shown here), so the
introduction of topography into the geostatistical
interpolation process cannot improve the smoothing effect.

As shown in Figure 3, the distribution of the labeled
grids, which represents the locations with extreme small-
scale spatial variability, is almost coincident with the
distribution of lakes (which is labeled with a solid line in
Figure 3) and the huge Himalaya mountains, which can
cause extreme spatial variability of precipitation. So
it can be inferred that that the disturbance of the
complicated underlying surface of the Tibetan Plateau by
precipitation can be monitored by microwave remote
sensing. By correcting the precipitation dataset
estimated by OCK with FETCH derived from CMORPH,
the spatial pattern of OCK substantially changed in
the locations where the lakes and mountainous were
distributed, and the results of the validation showed that
the correction can improve the performance of OCK.
This indicates that the smoothing effect is an important
drawback of OCK and can lead to serious bias when it is
used to simulate precipitation over mountainous regions.
This drawback can be effectively corrected by the small-

scale spatial variability of precipitation derived from a
microwave-based satellite precipitation dataset.

Conclusion

The rough terrain and the various types of land cover
make the spatial distribution of precipitation over the
Tibetan Plateau complicated. But precise estimation of the
precipitation over this remote area is difficult because of the
low density of the rain gauge network. In this study, a method
based on geostatistical interpolation and remote sensing was
proposed to estimate summer precipitation over the Tibetan
Plateau. The main idea of this model is that the rain gauge
observations are interpolated using OCK with DEM as a
covariant, and the smoothing effect in the result ofOCK is then
corrected by the small-scale spatial variability
of precipitation derived from the CMORPH satellite
precipitation dataset. The summer precipitation (June to
August) between 2005 and 2009 was estimated by
FETCH_OCK using 133 rain gauge observations, and the
results were validated by ground observations measured by 55
independent rain gauges. The performance of this model was
further assessed by comparing it with the input datasets (OCK
and CMORPH), as well as the precipitation estimated by UK
and TRMM3B43, which are widely used precipitation datasets.
The results of the 4 criteria MAE, RMSE,R2, and SSE indicated
that the precipitation dataset estimated by FETCH_OCK is not
onlymore accurate than the input datasets but also superior to
UK and TRMM 3B43 in most months. The method proposed
in this study offers a new idea for correcting the smoothing
effect inherent in all geostatistical-based interpolationmethods
when they are used to simulate precipitation.

A number of issues are worth further study. In
particular, the precision of FETCH_OCK can only be
validated in relatively rough spatial and temporal resolution
(the spatial resolution is 0.25u 3 0.25u, and the temporal
resolution is monthly), so the applicability of this model on a
smaller scale should be investigated. Meanwhile, we believe
it would be meaningful to assess the performance of this
model in other areas with low-density rain gauge networks.
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Jia S, Zhu W, Lű A, Yan T. 2011. A statistical spatial downscaling algorithm of
TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China.
Remote Sensing of Environment 115(12):3069–3079.
Joyce RJ, Janowiak JE, Arkin PA, Xie PP. 2004. CMORPH: A method that
produces global precipitation estimates from passive microwave and infrared
data at high spatial and temporal resolution. Journal of Hydrometeorology 5(3):
487–503.
Karaseva MO, Prakash S, Gairola RM. 2012. Validation of high-resolution
TRMM 3B43 precipitation product using rain gauge measurements over
Kyrgyzstan. Theoretical and Applied Climatology 108(1–2):147–157.
Kebaili Bargaoui Z, Chebbi A. 2009. Comparison of two kriging interpolation
methods applied to spatiotemporal rainfall. Journal of Hydrology 365(1–2):
56–73.
Kidd C, Levizzani V. 2011. Status of satellite precipitation retrievals. Hydrology
and Earth System Sciences 15(4):1109–1116.
Li M, Shao Q. 2010. An improved statistical approach to merge satellite rainfall
estimates and raingauge data. Journal of Hydrology 385(1–4):51–64.
Lloyd CD. 2005. Assessing the effect of integrating elevation data into the
estimation of monthly precipitation in Great Britain. Journal of Hydrology 308
(1–4):128–150.

Michaelides S, Levizzani V, Anagnostou E, Bauer P, Kasparis T, Lane JE.
2009. Precipitation: Measurement, remote sensing, climatology and modeling.
Atmospheric Research 94(4):512–533.
NASA [National Aeronautics and Space Administration]. 2013. Goddard Earth
Sciences Data and Information Services Center: Mirador. http://mirador.gsfc.
nasa.gov/cgi-bin/mirador; accessed on 12 March 2013.
Olea RA, Pawlowsky V. 1996. Compensating for estimation smoothing in
kriging. Mathematical Geology 28(4):407–417.
Rotstayn LD. 1998. A physically based scheme for the treatment of stratiform
clouds and precipitation in large-scale models. II: Comparison of modelled and
observed climatological fields. Quarterly Journal of the Royal Meteorological
Society 124(546):389–415.
Shen MG, Tang YH, Chen J, Zhu XL, Zheng YH. 2011. Influences of
temperature and precipitation before the growing season on spring phenology in
grasslands of the central and eastern Qinghai–Tibetan Plateau. Agricultural and
Forest Meteorology 151(12):1711–1722.
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