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Penman�Monteith (PM) theory has been successfully applied to calculate land
surface evapotranspiration (ET) for regional and global scales. However, soil
surface resistance, related to soil moisture, is always difficult to determine over a
large region, especially in arid or semiarid areas. In this study, we developed an
ET estimation algorithm by incorporating soil moisture control, a soil moisture
index (SMI) derived from the surface temperature and vegetation index space. We
denoted this ET algorithm as the PM-SMI. The PM-SMI algorithm was
compared with several other algorithms that calculated soil evaporation using
relative humidity, and validated with Bowen ratio measurements at seven sites in
the Southern Great Plain (SGP) that were covered by grassland and cropland with
low vegetation cover, as well as at three eddy covariance sites from AmeriFlux
covered by forest with high vegetation cover. The results show that in comparison
with the other methods examined, the PM-SMI algorithm significantly improved
the daily ET estimates at SGP sites with a root mean square error (RMSE) of 0.91
mm/d, bias of 0.33 mm/d, and R2 of 0.77. For three forest sites, the PM-SMI ET
estimates are closer to the ET measurements during the non-growing season when
compared with the other three algorithms. At all the 10 validation sites, the PM-
SMI algorithm performed the best. PM-SMI 8-day ET estimates were also
compared with MODIS 8-day ET products (MOD16A2), and the latter showed
negligible bias at SGP sites. In contrast, most of the PM-SMI 8-day ET estimates
are around the 1:1 line.

Keywords: ET; Penman�Monteith; soil moisture; MODIS

1. Introduction

Evapotranspiration (ET), which includes soil evaporation and vegetation transpira-

tion, is a major component of the global water cycle, and plays a central role in

climate and meteorology, plant community dynamics, and carbon and nutrient

biogeochemistry (Vörösmarty, Federer, and Schloss 1998). ET returns 60% of the

precipitation to the atmosphere (Oki and Kanae 2006) and imposes an important

constraint on the water supply. In addition, more than half of the absorbed solar

energy is utilized for ET (Trenberth, Fasullo, and Kiehl 2009). Accordingly, accurate
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estimation of ET is extremely valuable for better irrigation management, especially in

semiarid areas.

Remote sensing has been recognized as the most feasible means to provide a

spatial distribution of land surface ET, as it can be used to estimate the land surface

parameters required for estimation of ET, such as Normalized Difference Vegetation

Index (NDVI), Leaf Area Index (LAI), albedo, and land surface temperature (Ts).
Remote sensing-based methods can be divided into four types: (1) empirical

statistical methods (Bella, Rebella, and Paruelo 2000; Carlson, Capehart, and Gillies

1995; Wang and Liang 2008); (2) residual methods based on the residual of surface

energy balance through thermal infrared data (Anderson et al. 1997; Bastiaanssen et

al. 1998; Norman, Kustas, and Humes 1995; Su 2002); (3) triangle/trapezoid

methods linked with vegetation index and Ts (Jiang and Islam 1999; Jiang and

Islam 2001; Moran et al. 1994; Stisen et al. 2008; Tang, Li, and Tang 2010; Wang, Li,

and Cribb 2006; Zhang et al. 2005); and (4) Penman�Monteith or Priestley�Taylor

methods (Cleugh et al. 2007; Fisher, Tu, and Baldocchi 2008; Leuning et al. 2008;

Mu et al. 2007a; Yuan et al. 2010; Zhang et al. 2010).

The empirical methods relate ET to vegetation parameters and key environ-

mental control factors. These methods are naturally empirical, but their applications

in other areas are limited because these methods do not provide an explicit formula

to follow (Lu and Zhuang 2010). Some methods have proposed a universal empirical

method that is suitable for different land cover (Wang and Liang 2008; Wang et al.
2010). However, experiments show that the composition of tree species strongly

influence ET. Land cover dependent coefficients may be a better choice than a

universal formulation (Wang and Dickinson 2012).

For the residual method, surface temperature (Ts), air temperature (Ta), and

aerodynamic resistance (ra) are first critically used to calculate sensible heat flux.

Land surface temperature retrieved from thermal infrared data is strongly affected by

clouds, resulting in discontinuous valid data with an error of about 1 K (Wan et al.

2002). Air temperature may have an unacceptable error depending on the elevation

and number of distributed stations, if the ground-station measured values are

interpolated spatially (Hamann and Wang 2005; Stahl et al. 2006). The difference

between aerodynamic temperature and surface temperature results in the introduc-

tion of KB-1, which is a function of the structural characteristics of the vegetation,

level of water stress, and climatic conditions (Lhomme et al. 1997), and is difficult to

estimate precisely, especially on a regional or global scale. In addition, remote

sensing can only directly capture instantaneous information, which may not meet the

requirements of all applications (Li et al. 2009). The residual method may not be
suitable for the estimation of period-averaged ET because of the difficulties in using

8- or 16-day composites of once-daily measurements of radiative surface temperature

(Cleugh et al. 2007).

Although triangle/trapezoid methods are simple, and require only Ts and the

vegetation index, they have the following potential limitations: (1) determination of

the dry and wet edges requires a certain degree of subjectivity; (2) a large number of

pixels over a flat area with a wide range of soil wetness and fractional vegetation

cover (Fv) are required to ensure that dry and wet limits exist in the triangle/trapezoid

space (Sun et al. 2012). Zhang et al. (2005, 2008) determined the true dry edge based

on an energy balance equation to overcome the limitations mentioned above.

However, the estimated ET is still an instantaneous value.
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The main challenge in the practical application of the Penman�Monteith or

Priestley�Taylor equation is to determinate the surface resistance, which is related to

LAI, soil moisture status, leaf physiological attributes, and soil attributes. Based on

some definitions and assumptions, Kelliher et al. (1995) derived an expression for

surface resistance that considered the effects of soil and canopy. Leuning et al. (2008)

introduced a factor in the surface resistance model that indicates the ratio of the

actual ET to the potential ET. Cleugh et al. (2007) adopted the Penman�Monteith
equation to estimate the 16-day ET based on a canopy resistance sub-model driven

by MODIS-derived vegetation data and daily surface meteorological inputs

including incoming solar radiation, surface air temperature, and vapor pressure

deficit (VPD). Mu et al. (2007a) further modified the model developed by Cleugh

et al. to estimate the global ET, and its partitioning into soil evaporation and

vegetation transpiration. In their soil evaporation sub-model, soil resistance is

controlled by air relative humidity, assuming that it reflects soil moisture status

(Fisher, Tu, and Baldocchi 2008). Based on the model described by Mu et al. (2007a),

Zhang et al. (2010) developed a model to estimate ET using remotely sensed NDVI

data. Yuan et al. (2010) modified Mu et al.’s (2007a) model by adding the constraint

of air temperature to stomatal conductance and calculating the vegetation cover

fraction using LAI instead of EVI. Vinukollu et al. (2011) pointed out that Mu

et al.’s (2007a) model underestimated ET for grassland, cropland, and woody

savanna. Mu et al. (2011) improved Mu et al.’s (2007a) model by adding a nighttime

ET component and wet soil surface component to enhance the ET estimates.
Soil resistance is largely controlled by soil moisture. However, directly monitoring

large-scale soil moisture is always a challenge for remote sensing. Passive microwave

sensors, such as TRMM and AMSR-E, have 1�1.5 passes per day but a coarse

spatial resolution (25 km) that can only be used to estimate global or large-area soil

moisture. Conversely, active microwave sensors (SAR: Synthetic Aperture Radar)

have higher spatial resolution (10�30 m), but low repeat intervals (once in 16�25

days). Optical�thermal infrared sensors, such as MODIS and AVHRR/NOAA, have

moderate resolution (250 m to 1 km) and one or two overpasses per day, which is

suitable for regional- or large-scale applications. In addition, the triangle/trapezoid

method formed by land surface temperature and vegetation index data is considered

as a simple and suitable method to monitor soil moisture, and has been applied by

many researchers (Gao et al. 2011; Mallick, Bhattacharya, and Patel 2009; Sandholt,

Rasmussen, and Andersen 2002; Wang et al. 2004). However, this method has the

same disadvantages as the triangle ET method. To reduce the uncertainties

associated with the determination of the dry edge, Zhang et al. (2008) developed

the theoretical dry edge based on the energy balance equation. Then, Sun et al.

(2012) showed that the theoretical dry edge could monitor soil moisture better than
the traditional dry edge, which is fitted by scatterplots.

Mu et al. (2007b) have pointed out that the use of VPD alone is not enough to

indicate the effects of the environmental water stress on plant growth for the arid and

semiarid areas. For the similar reason, the VPD alone should not be enough to

represent the water stress on ET especially in the arid and semiarid regions. In this

study, we incorporated a soil moisture index (SMI), extracted from Ts�Fv space, into

the Penman�Monteith equation to estimate ET over semiarid areas, which is

abbreviated as the PM-SMI method. We then compared this method with those

developed by Mu et al. (2007a), Mu et al. (2011), and Yuan et al. (2010), which are
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abbreviated as PM-Mu2007, PM-Yuan, and PM-Mu2011 below, in which soil

evaporation is controlled by relative humidity.

2. ET algorithms

Soil evaporation in PM-Mu2007, PM-Mu2011, and PM-Yuan is limited by relative

humidity, assuming that VPD (saturation vapor pressure deficit) can be used as an

indicator of environmental water stress (Fisher, Tu, and Baldocchi 2008; Granger

and Gray 1989). The PM-SMI algorithm is revised from PM-Mu2007, and we used

SMI instead of the relative humidity, as soil moisture control.

2.1. PM-Mu2007 algorithm

Net radiation (Rn) is linearly partitioned between the canopy and the soil surface

using Fv,

Rnc ¼ Fv � Rn

Rns ¼ ð1� FvÞ � Rn

(1)

where Rnc and Rns are the total net incoming radiation (Rn) partitioned to the canopy

and soil, respectively. Fv is estimated as follows:

Fv ¼
NDVI�NDVImin

NDVImax �NDVImin

(2)

where NDVImin and NDVImax are the signals from bare soil and dense green

vegetation, which are set as seasonally and geographically invariant constants of 0.05
and 0.95, respectively (Zhang et al. 2009). The total latent heat flux is the sum of

vegetation transpiration and soil evaporation:

kE ¼ kEc þ kEs (3)

where lE is the latent heat flux, lEc is the vegetation transpiration (W/m2), and lEs is

the soil evaporation (W/m2). Finally, ET (mm) is calculated as:

ET ¼ kE

k
(4)

where l (2.43�106 J/kg) is the latent heat of vaporization.

2.1.1. Vegetation transpiration

Vegetation transpiration is calculated as:

kEc ¼
DRnc þ FvqCpVPD=ra

Dþ c 1þ rc=rað Þ
(5)

where D (Pa/K) is the slope of the curve relating saturated water vapor pressure to

temperature, r (kg/m3) is the air density, Cp (J/kg/K) is the specific heat capacity of

air, g (Pa/K) is the psychrometric constant, VPD (Pa) is the saturation vapor pressure

deficit (VPD�esat � e0, where esat is the saturation vapor pressure, e0 is the actual
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vapor pressure), ra (s/m) is the aerodynamic resistance, and rc (s/m) is the canopy

resistance, which is the reciprocal of canopy conductance gc (gc�1/rc). LAI is used as

a scalar to convert the stomatal conductance (gs) calculated at the leaf level to a

canopy conductance, and gs is estimated as described by Mu et al. (2007a), assuming
that it is mainly affected by VPD and air temperature:

gs ¼ CL �mðTminÞ �mðVPDÞ
gc ¼ gs � LAI

(6)

where m(Tmin) is a temperature stress factor, m(VPD) is a water/moisture stress

factor, CL is the mean potential stomatal conductance per unit leaf area, and

m(VPD) and m(Tmin) are calculated as Mu et al. (2007a):

mðVPDÞ ¼
1:0 VPD � VPDopen

VPDclose�VPD

VPDclose�VPDopen
VPDopenBVPDBVPDclose

0:1 VPDclose � VPD

8<
: (7)

mðTminÞ ¼
1:0 Tmin � Tmin open

Tmin�Tmin close

Tmin open�Tmin close
Tmin closeBTminBTmin open

0:1 Tmin � Tmin close

8<
: (8)

where VPDopen and Tmin_open are the biome-specific critical value of VPD and

minimum air temperature (Tmin) at which the canopy stomata are completely open,

respectively; VPDclose and Tmin_close are the biome-specific critical value of VPD and

Tmin at which canopy stomata are completely closed, respectively. The values of CL,
VPDopen, VPDclose, Tmin_open, and Tmin_close are listed in a Biome Properties Look-

Up Table (Mu et al. 2007a). Aerodynamic resistance is calculated as follows:

ra ¼
rh � rr

rh þ rr

(9)

rr ¼
qCp

4rT4
k

(10)

where rr (s/m) is the resistance to radiative heat transfer and rh (s/m) is the resistance
to convective heat transfer and assumed to be equal to the boundary layer resistance

(Thornton 1998), which is set as 107 s/m (Mu et al. 2007a).

2.1.2. Soil evaporation

Relative humidity is used as a constraint for potential soil evaporation to calculate
actual soil evaporation:

kEs ¼
RH

100

� �VPD=100

�
D Rns � Gð Þ þ 1� Fvð ÞqCpVPD=ra

Dþ c 1þ rtot=rað Þ
(11)

The total aerodynamic resistance to vapor transport (rtot) is the sum of surface

resistance (rs) and the aerodynamic resistance, which is the same value as rh (107 m/s)

(Mu et al. 2007a; Thornton 1998).
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2.2. PM-SMI algorithm

In the PM-SMI algorithm, vegetation transpiration is calculated the same way as

PM-Mu2007. Soil evaporation is estimated by incorporating soil moisture control as

follows:

kEs ¼
DðRns � GÞ þ ð1� FvÞqCpVPD=ra

Dþ c 1þ rs=rað Þ
(12)

where G is the soil heat flux and rs (s/m) is the soil resistance, which is estimated from

the surface soil water content (assumed to be representative of the 0�5 cm layer) with

an exponential equation (Kustas, Zhan, and Schmugge 1998; Sellers, Heiser, and

Hall 1992),

rs ¼ exp a� b W=Wsð Þ½ � (13)

where W is the actual surface soil water content, Ws is the water content at

saturation, which is a function of the soil texture, a and b are the experimentally

derived parameters, adopted as 8.4 and 5.9, respectively, here (Kustas, Zhan, and
Schmugge 1998). In addition, W/Ws could also be substituted by a relative soil

moisture index (SMI) in Equation (13), expressed as Equation (14):

rs ¼ exp a� b � SMI½ � (14)

Ts�Fv triangle is adopted widely to estimate soil moisture. However, the dry edge
observed in the remote sensing data is characterized by lower temperatures

compared with the theoretical dry edge, and thus, the observed dry edge determined

by scatter plots is usually lower than the theoretical dry edge (Stisen et al. 2008). In

this study, SMI is calculated from an improved Ts�Fv triangle space (Sun et al. 2012),

in which the dry edge is determined by the energy balance equation. Sun et al. (2012)

demonstrated that the new dry edge set a standard for different days and that the

drought index calculated from the improved Ts�Fv space could monitor soil moisture

conditions better than the traditional Ts�Fv space could. The details could be found
in Appendix 1. Soil heat flux (G) is calculated as:

G ¼ Rnð1� FvÞ � k (15)

where k is the ratio between G and Rn for bare soil. Halliwell and Rouse (1987)

reported a daily k value of 0.16� 0.18 at Churchill, Manitoba, while Rouse (1984)
found a daily k value of 0.16� 0.24 in Hudson Bay. Therefore, we set the daily k value

as 0.18 (Jacobsen 1999).

Figure 1 shows the logic behind the PM-SMI ET algorithm for estimating daily ET.

2.3. PM-Mu2011 algorithm

Mu et al. (2011) added two items to improve ET estimation, evaporation from the

wet canopy surface (lEwet) and nighttime ET. The total lE is expressed as:

kE ¼ kEwet þ kEc þ kEs (16)

The estimation of rc, ra, and rtot are also revised. The details are provided in Mu et al.

(2011).

International Journal of Digital Earth 139

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 0

0:
08

 2
2 

A
ug

us
t 2

01
4 



2.4. PM-Yuan algorithm

PM-Yuan adopted the same equations as PM-Mu2007, except for m(Tmin), which

follows the equation detailed by Fisher, Tu, and Baldocchi (2008):

mðTminÞ ¼ exp �
Ta � Topt

Topt

 !2
0
@

1
A (17)

where Topt (8C) is the optimum air temperature for photosynthesis, which is set as

258C (Yuan et al. 2010). In this algorithm, biome property parameters such as CL,

VPDopen, VPDclose, and Topt are invariant across the various land cover types.

3. Data

To compare the performance of ET algorithms applied to different vegetation cover

conditions, we used two data-sets. One data-set included seven sites in the Southern
Great Plain (SGP) collected from 2004. The SGP is located in the middle of the

USA, and primarily covered by grassland and cropland with low vegetation cover.

The other data-set included three sites of the AmeriFlux network sampled in 2005.

These sites are located in eastern USA, and primarily covered by forest with high

vegetation cover.

3.1. SGP

The SGP site was the first field measurement site established by the Atmospheric

Radiation Measurement Program. More than 30 instrument clusters have been placed

Figure 1. Flowchart of the PM-SMI ET algorithm for calculating daily ET.
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around the SGP site, at the Central Facility and at Boundary, Extended, and

Intermediate Facilities. The locations for the instruments were selected so that the

measurements reflect conditions over the typical distribution of land uses within the site.

The SGP covers most of Oklahoma and the southern part of Kansas, which is a
heterogeneous land cover area characterized by mixed farming, interrupted forest, and

tall and short grass. Major soil types are silt loam, loamy sand, and loam. The region

produces much of the nation’s grain and fiber, including more than 60% of the wheat and

36% of the cotton. Water supplied as irrigation in the region amounts to billions of cubic

meters (2�1010 m3 in 1990) annually and is governed by the determination of ET in the

region. An area including seven study sites (Table 1), was selected in this study, and the

Energy Balance Bowen Ratio (EBBR) system was placed to obtain ET measurements.

EBBR produces 30-minute estimates of the vertical fluxes of sensible and latent
heat at the local surface. Flux estimates are calculated from the observations of net

radiation, soil surface heat flux, and the vertical gradients of temperature and

relative humidity. Meteorological data collected by the EBBR are used to calculate

the bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique

EBBR value-added product to replace sunrise and sunset spikes in the flux data. A

unique aspect of the system is the automatic exchange mechanism which helps to

reduce errors from instrument offset drift.

lE is estimated as a function of the Bowen ratio b:

kE ¼ Rn � G

1þ b
(18)

where b is estimated from the vertical gradients of temperature (DTa) and specific

humidity (De0).

3.2. AmeriFlux sites

An area in the eastern USA including three flux towers, Duke Forest Hardwoods,

North Carolina Loblolly Pine, and Walker Branch, were selected. Detailed

information regarding these sites is listed in Table 1.

The ET at the AmeriFlux sites was measured by the eddy covariance (EC)

method (http://public.ornl.gov/ameriflux/data-get.cfm). The eddy covariance method

is accepted as the best method for direct measurement of heat fluxes and is widely

Table 1. Location, soil type and land cover of study sites.

Site Lat Lon Land cover

E7_Elk_Falls 37.383 N 96.18 W Grass

E8_Coldwater 37.333 N 99.309 W Grass

E9_Ashton 37.133 N 97.266 W Grass

E13_Lamont 36.605 N 97.485 W Crop

E15_Ringwood 36.431 N 98.284 W Grass

E20_Meeker 35.564 N 96.988 W Grass

E27_Earlsboro 35.269 N 96.740 W Grass

Duke Forest Hardwoods 35.974 N 79.100 W Mixed forest

North Carolina Loblolly Pine 35.803 N 76.668 W Mixed forest

Walker Branch 35.959 N 84.287 W Deciduous

broad-leaf forest
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used in global measurement experiments (Baldocchi et al. 2001). Unfortunately, it

suffers from an energy imbalance problem, defining the energy closure ratio (ECR) as:

ECR ¼ kEec þHec

Rn � G
(19)

where lEec and Hec are the original latent heat flux (lE) and sensible heat flux (H)

measured by the eddy covariance method. The ECR of the three sites used in this

study is listed in Table 3. Wilson et al. (2002) argued that ECR is about 0.8 for the

global FluxNet measurements, which results in a substantial underestimation of lE

and H. However, ECR should be equal to unity according to the energy balance law.

Although several reasons are proposed to explain the energy imbalance issue, the

mechanism for this imbalance remains unclear (Gao 2005; Wilson et al. 2002; Yang

et al. 2004). We applied the correction method, assuming that Bowen ratio is

correctly measured, proposed by Twine et al. (2000) to obtain the corrected lE

measurements for validation:

kE ¼ kEec

ECR
(20)

3.3. Remote sensing data

Four MODIS products, including the 16-day vegetation indices at 1-km resolution

(MOD13A2), daily Ts products at 1-km resolution (MOD11A1), 8-day albedo

products at 1-km resolution (MCD43B3), and 8-day ET products (MOD16A2) at

1-km resolution were used. These data were acquired through the EOS data gateway

(https://wist.echo.nasa.gov), except for the MOD16A2 which were downloaded from

frp://ftp.ntsg.umt.edu. Two algorithms were used to retrieve Ts from the MODIS
thermal and middle infrared spectral regions: the generalized split window algorithm

(Wan and Dozier 1996) and the MODIS day/night land surface temperature algorithm

(Wan and Li 1997). The accuracy of the MODIS Ts product is better than 1 K (Wan et

al. 2002; Wan et al. 2004). The 16-day NDVI extracted from MOD13A2 was time

series smoothed by the locally adjusted cubic spline capping (LACC) method (Chen,

Feng, and Chen 2006), which can produce flexible and mathematically smooth

capping curves and fit rapid seasonal changes, for the purpose of identifying the

atmosphere-contaminated data points and their replacements through temporal
interpolation. The data were then linear interpolated to give the daily value. The

albedo product consists of black sky and white sky albedo. To derive the overall

surface albedo, we followed the method described by Su et al. (2007) by averaging the

above two estimates. The MOD16 ET data-sets were estimated using the ET algorithm

described by Mu et al. (2011). The MOD16 ET algorithm uses NASA’s MERRA

GMAO (GEOS-5) daily meteorological reanalysis data, collection 4 MOD12Q1,

collection 5 MCD43B2/B3 and MOD15A2 as input. The 8-day ET is the sum of ET

during these 8-day time periods. All these products described above were converted to
UTM projection using the Modis Reprojection Tool.

Two study regions were selected for this study. One is in the middle of the USA,

containing seven SGP sites. The selected window size for the remote sensing image

was 562�526 km, extended in longitude from 95.38W to 99.58W and in latitude

from 34.58N to 38.58N, which is the spatial subset from tile H10V05 of 2004 and
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covered most of the SGP. Another is in eastern USA, containing three AmeriFlux

sites, for which the selected window size of the remote sensing image was 884�592

km. This area extended in longitude from 75.18W to 85.48W and in latitude from

34.58N to 39.88N, which is the spatial subset from tile H11V05 of 2005.

3.4. Methodology

In this study, although SMI distribution could be estimated based on Ts�Fv space, we

use in situ meteorological data such as Ta, RH, and Rn. Therefore, only in situ ET is

estimated using measured meteorological data and 3�3 1-km pixels of remote

sensing data surrounding each site. Below is the description of each step.

(1) Deriving the dry edge using instantaneous value of air temperature, vapor

pressure (e0), solar radiation (S0), Ts, albedo, and NDVI;

(2) Calculating the SMI distribution based on the improved Ts�Fv space and

extracting 3�3 pixels value of SMI, NDVI, and LAI images surrounding

each study site;

(3) Estimating daily ET using in situ daily value of air temperature, relative

humidity (RH), Rn, and each pixel value of SMI, NDVI, and LAI;
(4) The PM-SMI ET average over the 3�3 pixels was validated with tower ET

observations;

(5) Compared to the other three ET algorithms with the same input measure-

ment data.

4. Results and discussion

Table 2 shows the mean NDVI, mean LAI, max NDVI, max LAI, and mean soil
water content for each site. The vegetation cover is low for SGP sites, which were

Table 2. The mean NDVI, mean LAI, max NDVI, max LAI and mean soil water content for

each site. The mean and max values of NDVI and LAI were obtained from the MODIS NDVI

and LAI products. The mean soil water content was obtained from surface soil moisture

measurements taken at 5 cm. The data from SGP sites was collected from 2004 and the data

from AmeriFlux sites was collected from 2005.

Site Mean NDVI Mean LAI Max NDVI Max LAI

Mean soil water

content (m3/m3)

E7 0.54 1.4 0.75 3.1 0.37

E8 0.45 0.8 0.52 1.5 0.14

E9 0.49 0.6 0.62 1.1 0.32

E13 0.53 0.9 0.67 2.1 0.32

E15 0.48 0.64 0.60 1.0 0.11

E20 0.55 1.2 0.73 2.6 0.32

E27 0.56 1.1 0.74 2.3 0.18

Duke FH 0.67 2.42 0.85 5.9 0.33

North CLP 0.63 2.27 0.86 6.3 0.33

Walker B 0.68 2.44 0.88 6 0.2
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covered by grassland and cropland. There is a mix of good density improved pasture

in site E7; therefore, the value of NDVI and LAI in this site is relatively high (max

NDVI�0.75, max LAI�3.1). The vegetation cover is high for the three forest sites.

The soil type of E8 and E15 is sandy; therefore, the mean soil water content is lower

than 0.15 m3/m3.

Since Ts is affected by clouds, the results of the PM-SMI algorithm were only
available for less than half of the year. As shown in Table 3, the PM-SMI algorithm

significantly enhanced the ET estimates for all of the SGP sites, which were covered

by grassland and cropland, while the other three ET algorithms had relatively large

errors. For example, at site E9, the root mean square error (RMSE) of PM-Mu2007,

PM-Mu2011, PM-Yuan, and PM-SMI is 1.69, 1.64, 1.67, and 0.39 mm, respectively,

while the bias is �1.49, �1.34, �1.45, and �0.03 mm, respectively, and the R2 is 0.94,

0.87, 0.95, and 0.95, respectively. Although the R2 values of the PM-SMI ET

estimates are close to those of the PM-Mu2007 and PM-Yuan ET estimates, the

RMSE and bias were greatly reduced, indicating that PM-SMI ET estimates capture

the magnitude of ET measurements better than the other three algorithms. For all

the seven SGP sites, the RMSE and bias of PM-Mu2011 (1.37 mm and �0.93 mm)

are lower than that of PM-Mu2007 (1.4 mm and �1.06 mm). However, the R2 of PM-

Mu2011 (0.64) is lower than the PM-Mu2007 (0.69). The RMSE, bias, and R2 of

PM-Yuan fall between those of PM-2007 and PM-2011. Although PM-Mu2011

improved the ET estimates when compared with PM-Mu2007 at grasslands and

croplands as reported by Mu et al. (2011), results of this study indicate that PM-
Mu2011 still underestimates ET.

Among the forest sites, in Duke Forest Hardwoods (Mixed forest), North

Carolina Loblolly Pine (Mixed forest) and Walker Branch (Deciduous Broad-leaf

forest), there were no large differences among ET estimates of PM-Mu2007, PM-

Yuan, and PM-SMI. Although PM-Mu2011 showed the lowest RMSE and bias and

the highest R2 in Walker Branch, PM-Mu2011 showed the lowest correlation and

highest RMSE and bias across all the three forest sites.

Across all 10 sites, the PM-SMI algorithm also had the best performance, with an

RMSE of 0.88 mm, bias of 0.24 mm and R2 of 0.78. PM-Yuan ET estimates had a

slightly lower RMSE and bias (1.28 mm, �0.78 mm), and higher R2 (0.66) than PM-

Mu2007 (1.31 mm, �0.82 mm and 0.66) and PM-Mu2011 (1.33 mm, �0.8 mm and

0.64). PM-Mu2011 had a lower bias than PM-Mu2007, but the RMSE was higher

and the R2 was lower. Mu et al. (2011) also indicated that PM-Mu2011 had a

reduced bias relative to PM-Mu2007, although it had a slightly increased RMSE and

decreased R2.
Figure 2 shows the scatterplots between the observed and the estimated ET with

four algorithms. PM-Mu2007, PM-Mu2011, and PM-Yuan significantly under-

estimate ET and PM-SMI performs the best among the four ET algorithms. Figure 3

shows comparisons of the ET measurements and the ET estimates with four

algorithms. The PM-SMI ET estimates match well across the annual variation for all

SGP sites. PM-Mu2007, PM-Mu2011, and PM-Yuan algorithms obviously under-

estimated ET across SGP sites, where soil evaporation plays a dominant role.

However, for E7, E20, and E27, which have relatively good vegetation condition

(Table 2), these three algorithms’ ET estimates are closer to the ET measurements,

with a lower bias (Table 3). No significant difference was observed among the four

algorithms’ ET estimates for the three forest sites during the growing season.
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Table 3. Available days, root mean square error (RMSE: mm/day), absolute bias (bias: mm/day), and square of correlation coefficient (R2) of four ET

algorithms for each site. (1) PM-Mu2007; (2) PM-Mu2011; (3) PM-Yuan; and (4) PM-SMI.

Site ECR Available days RMSE1 RMSE2 RMSE3 RMSE4 Bias1 Bias2 Bias3 Bias4 R21 R22 R23 R24

E7 � 148 1.30 1.08 1.22 0.74 �1.01 �0.71 �0.95 �0.05 0.79 0.81 0.81 0.86

E8 � 161 1.48 1.49 1.44 1.05 �1.14 �1.20 �1.11 0.43 0.44 0.55 0.46 0.58

E9 � 162 1.69 1.64 1.67 0.39 �1.49 �1.34 �1.45 �0.03 0.94 0.87 0.95 0.95

E13 � 153 1.89 1.95 1.88 0.97 �1.35 �1.23 �1.29 0.18 0.60 0.40 0.54 0.75

E15 � 161 1.38 1.49 1.39 0.98 �1.05 �1.07 �1.04 0.57 0.73 0.69 0.74 0.76

E20 � 149 1.02 0.87 0.96 0.83 �0.76 �0.46 �0.71 0.34 0.82 0.81 0.84 0.85

E27 � 127 1.22 1.01 1.18 0.90 �0.91 �0.67 �0.85 0.26 0.83 0.86 0.84 0.81

SGP � 1.40 1.37 1.37 0.91 �1.06 �0.93 �1.02 0.33 0.69 0.64 0.69 0.77

Duke FH 0.81 180 0.56 0.93 0.53 0.58 �0.05 �0.43 �0.02 0.09 0.93 0.84 0.93 0.91

North CLP 0.70 158 0.88 1.46 0.86 0.68 �0.67 �0.89 �0.66 �0.38 0.91 0.72 0.91 0.89

Walker B 0.64 98 1.31 0.82 1.30 1.42 0.76 0.37 0.78 0.98 0.74 0.80 0.73 0.68

Forest � 0.99 1.20 0.97 0.96 �0.12 �0.45 �0.10 0.15 0.75 0.69 0.75 0.74

All � 1.31 1.33 1.28 0.88 �0.82 �0.80 �0.78 0.24 0.66 0.64 0.66 0.78
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However, the PM-SMI ET estimates are closer to the ET measurements in the non-

growing season when compared with the other three algorithms.

Figure 4 shows comparisons of the 8-day ET measurements with the PM-SMI 8-

day ET estimates and MODIS 8-day ET product. For the PM-SMI ET estimates, it

was difficult to obtain continuous daily ET owing to the lack of continuous Ts.

Therefore, the valid PM-SMI 8-day ET was combined for every 8-day period, during

which there are more than six valid daily ET values. The MODIS 8-day ET was

extracted directly from the MOD16A2 product. As shown in Figure 4, the MODIS

8-day ET was significantly lower than the ET measurements for the SGP sites, with

R2, RMSE, and bias values of 0.51, 10.58 mm, and �6.72 mm, respectively. In

contrast, most of the PM-SMI 8-day ET estimates were around the 1:1 line. However,

the PM-SMI 8-day ET estimates were slightly larger than the ET measurements, with

a bias of 4.02 mm. The PM-SMI daily ET was estimated based on clear day

conditions with no clouds, resulting in larger ET values when compared to those

obtained for cloudy days. Therefore, it is reasonable that the PM-SMI 8-day ET

estimates combined from the cloudless daily ET were slightly larger than the

measurements. The R2 and RMSE of the PM-SMI 8-day ET estimates were 0.68 and

7.82 mm, respectively.

However, relatively large differences between PM-SMI ET estimates and ET

measurements still exist for a few sites, including E8, E13, E15, and Walker Branch.

These discrepancies may be explained by the following:

Figure 2. Scatterplots between observed ET and estimated ET.
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(1) Estimation error of soil heat flux. Surface available energy used in the

Penman�Monteith equation is estimated from net radiation minus soil heat

flux. However, soil heat flux, which is correlated with soil properties, soil

moisture, and vegetation condition, has high spatial variability. The ratio
between G and Rn over bare soil ranges from 0.20 to 0.50 depending on the

soil moisture (Idso, Aase, and Jackson 1975), and from 0.05 to 0.30

depending on the vegetation cover (Clothier et al. 1986; Kustas and Daughtry

1990). Therefore, it is a challenge to estimate soil heat flux. In our study,

Figure 3. The ET measurements (gray line) and ET estimates with PM-Mu2007 (cyan line),

PM-Mu2011 (blue line), PM-Yuan (yellow line), and PM-SMI algorithms (red line) for 10

sites.
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relative bias of G ranged from �30% to 30%, which may result in some

uncertainties associated with the ET estimates.

(2) Algorithm limitations. Biophysical parameters (CL, VPDclose, and VPDopen)
used in this study are the same as those used in the PM-Mu 2011 algorithm.

However, Mu et al. (2007a), Mu et al. (2011), Yuan et al. (2010), and Zhang

et al. (2010), all have recalibrated the biophysical parameters of Penman�
Monteith ET algorithms based on their studies. The parameters such as a and

b, which are used to compute soil resistance (rs) from SMI, are also the same

Figure 3. (Continued)

Figure 4. Comparisons of 8-day ET measurements to PM-SMI 8-day ET estimates and the

MODIS 8-day ET product.
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as those used by Kustas, Zhan, and Schmugge (1998). However, these values

are a function of soil texture, which is heterogeneous in our study region, and

consists of silt loam, sandy loam, clay loam, and loamy sand. Unfortunately,

ground measurement sites for different biome types or soil textures are not
sufficient for analysis. Therefore, it is not possible to refit these parameters.

(3) SMI. The SMI incorporated in the PM-SMI algorithm is estimated based on

improved Ts�Fv trapezoid space (Sun et al. 2012). The assumption of

monitoring soil moisture based on Ts�Fv space is that meteorological

parameters and land surface attributes are homogeneous (Friedl and Davis

1994; Lambin and Ehrlich 1995; Zhang et al. 2008). However, Sun et al.

(2012) showed that sites with sandy soil, such as E8 and E15, could result in

an evident difference in heat property and relationships between Ts and soil
moisture when compared to other soil types, which was likely a major cause

of large errors at E8 and E15.

(4) Inaccuracy of ET measurements. Surface energy flux data from the SGP sites

measured by Bowen ratio do not have energy balance non-closure problem.

However, data from three forest sites, measured by the eddy covariance flux

towers, have lack of energy balance closure. Although latent heat flux was

corrected using the method of Twine et al. (2000), correcting error and

reducing uncertainty in the ET measurements is still uncertain due to the
closure error (Shuttleworth 2007). The large errors at the Walker Branch site

may result from a low energy balance ratio, which is about 50% on most days.

(5) Validation. We found that some research used one pixel containing the study

site to validate (Yuan et al., 2010), some research used 3�3 pixels to validate

(Mu et al. 2007a), and some research used footprint model to validate (Jia

et al. 2012). To reduce the effect of heterogeneity of land surface, we used

3�3 pixels surrounding the study sites to validate the results. Actually, this is

a simplified method while the area of these pixels could mostly represent the
source area of flux measurements. The source area is always varying with the

observation height, wind velocity and direction, atmospheric stability, and

the roughness length of land surface. For the EC and EBBR measurements,

which used in this study, the source area of them might either located in only

one MODIS pixel or covered some parts of two to four pixels, with different

relative contribution within the source area.

5. Conclusions

Penman�Monteith equation is a classical method used to calculate ET. However,

surface resistance, which is related to soil moisture, is always difficult to obtain. In

this study, we developed an ET algorithm by incorporating the SMI derived from an

improved Ts�Fv space. The PM-Mu2007algorithm has been successfully applied on

the global scale (Mu et al. 2007a; Mu et al. 2009), and was recently adjusted by Yuan

et al. (2010) and Zhang et al. (2009). Mu et al. (2011) pointed out that PM-Mu2007

underestimates ET for cropland, grassland, and woody savanna, which was also
confirmed by other studies (Vinukollu et al. 2011). Mu et al. (2011) improved this ET

algorithm and enhanced the ET estimates most for woody savannas, grasslands, and

croplands. Soil evaporation in these ET algorithms was controlled by VPD. However,

the VPD alone is not enough to represent the water stress on ET especially in the arid
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and semiarid regions (Mu et al. 2007b). Generally in the arid and semiarid areas, the

vegetation cover fraction is low, the plant transpiration is low as well, and hence the

soil evaporation is the largest part of the ET components.

In this study, we tried to improve Mu et al.’s 2007 ET algorithm by incorporating

the SMI to account for the soil moisture constraint on soil evaporation to develop

the PM-SMI ET algorithm. ET estimates derived from PM-SMI algorithm were

compared with PM-Mu2007, PM-Mu2011, and PM-Yuan algorithm and validated

by seven SGP sites that were covered by cropland and grassland with low vegetation

cover, as well as three AmeriFlux sites covered by forest with high vegetation cover.

The results showed that the PM-SMI algorithm significantly improved daily ET

estimates at SGP sites with an RMSE of 0.91 mm, bias of 0.33 mm, and R2 of 0.77.

PM-Mu2011 reduced the RMSE and bias of ET estimates when compared with PM-

Mu2007, but still underestimated ET. For the three forest sites, no large difference

was observed among the ET estimates produced by these four algorithms during the

growing season. However, the PM-SMI ET estimates are closer to the ET

measurements in the non-growing season when compared with the other three

algorithms. For all 10 validation sites, PM-SMI also had the best performance,

followed by PM-Yuan.

PM-SMI 8-day ET estimates were also compared with MODIS 8-day ET product

(MOD16A2). MODIS 8-day ET was significantly lower than the ET measurements

for the SGP sites, with R2, RMSE, and bias values of 0.51, 10.58 mm, and �6.72 mm,

respectively. In contrast, most PM-SMI 8-day ET estimates were around the 1:1 line,

with R2, RMSE, and bias values of 0.68, 7.82 mm, and 4.02 mm, respectively.

ET distribution is necessary in many applications, and the method proposed in

this manuscript would be a meaningful attempt to get the ET maps. Unfortunately,

the input meteorological data, such as net radiation (Rn) was only collected from

study sites. We could not get a good product of Rn distribution of the study area. We

will try to make some analysis about the ET distribution in the future. The

application of PM-SMI is limited by land surface temperature, which is used to

obtain the SMI, since surface temperature is largely affected by clouds and it is

difficult to capture consistent and valid data. Passive microwave sensors, such as

AMSR-E, which have all-weather surface sensing capability, have been used to

retrieve soil water content (Bindlish et al. 2003; Njoku et al. 2003). However, the

application of this technique is limited by its coarse spatial resolution (25 km). In the

future, we plan to downscale the soil moisture product derived from AMSR-E to fine

scales matching MODIS 1 km resolution.
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Appendix A: Calculation of relative soil moisture based on Ts�Fv space.

Relative soil moisture index (SMI) is calculated as Equation (A1) and determined from
Ts�Fv space as shown in Figure A1. In this Ts�Fv space, the dry edge is determined based on
the energy balance equation (Zhang et al. 2008). Sun et al. (2012) showed that the new dry
edge could monitor soil moisture better than the traditional dry edge, which is fitted by
scatterplots.

SMI ¼ Tmax � Ts

Tmax � Tmin

¼ AC

AB
(A1)

The dry edge was determined from energy balance formula:

Rn � G ¼ H þ LE (A2)

For the extreme dry condition, there is no LE, so Equation (A2) could be expressed as:

Rn � G ¼ H (A3)

The sensible heat flux H is estimated as:

H ¼
qCp Ts � Tað Þ

ra

(A4)

Net radiation Rn can be expressed as:

Rn ¼ S0ð1� aÞ þ reaT 4
a � resT

4
s (A5)

Figure A1. Ts�Fv trapezoid space. The upper solid line is the dry edge, estimated from the

energy balance formula, representing extreme water stressed conditions. The lower solid line is

the wet edge, representing saturated soil water conditions.
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where S0 is the solar radiation reaching the earth’s surface, a is albedo, s is Stefan�Boltzmann
constant,. oa is the atmospheric emissivity under clear skies, calculated as follows (Brutsaert
1975):

ea ¼ 1:24
e0

Ta

 !1=7

(A6)

os is the emissivity of land surface, estimated by (Zhang et al. 2008):

es ¼ Fvev þ 1� Fvð Þess (A7)

where ov and oss are emissivity for vegetation (0.97) and soil (0.95), respectively. Instantaneous
G at midday can be calculated as follows (Su 2002):

G ¼ Rn Cv þ ðCs � CvÞð1� FvÞ½ � (A8)

where Gv and Gs are the ratios between G and Rn for bare soil and fully covered vegetation
surface, respectively. The value of Gs is taken as 0.315 (Kustas and Daughtry 1990), while 0.05
for Gv (Monteith 1973). For dry bare soil, the vegetation cover Fv�0, taking Equations (A4),
(A5), and (A8) into Equation (A3), surface temperature is derived as follows:

Tsd ¼
0:7 S0 1� asdð Þ þ reaT4

a½ � þ qCp

rsda
Tsda

qCp

rsda
þ 0:7resdT3

sd

(A9)

where the subscript sd denotes dry bare soil. For full-cover vegetation with no available water,
the vegetation cover Fv�1, taking Equations (A4), (A5), and (A8) into Equation (A3), surface
temperature is given by:

Tvd ¼
0:95 S0 1� avdð Þ þ reaT4

a½ � þ qCp

rvda
Tvda

qCp

rvda
þ 0:95revd T3

vd

(A10)

where the subscript vd denotes true dry full cover vegetation. Tsd or Tvd can be iteratively
computed if the asd, avd, Tsda, Tvda, rsda, rvda, e0, and S0 are acquired.

We adopt an empirical method proposed by Zaksek and Schroedter-Homscheidt (2009) to
estimate instantaneous Ta:

Ta ¼ Ts þ 1:82� 10:66 � cos zv � ð1�NDVIÞ
þ0:566 � av � 3:72 � ð1� aÞ � ðcos sa= cos zv þ ðp� sÞ=pÞ

�S0 � 3:41 � Dh

where zv is the solar zenith angle, av is the solar azimuth angle, a is the albedo, sa is the solar
incidence angle, s is the slope, and Dh is the difference between the station elevation and the
mean elevation within a 20 km vicinity. Assuming that the theoretically driest atmospheric
conditions is close to the observed driest conditions, the pixel with the greatest air temperature
around the upper-left corner in the trapezoid represents the driest bare soil, and the pixel with
the greatest air temperature around the upper-right corner in the trapezoid represents the
driest full-cover vegetation. The temperatures of these two pixels are represented as Tsda and
Tvda.

For asd and avd, we select the maximum albedo from the bare soil and full cover vegetation,
corresponding to soil and vegetation dry conditions, respectively.

Assuming that there is not much variation for S0 on a regional scale (Mueller et al. 2004)
for a clear sky, the averaged value of measured S0 is adopted as the input. The location of the
theoretical dry edge is not sensitive to ea (Sun et al. 2012); thus, the averaged value of ea is also
adopted as the input.
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