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Abstract Accurate estimation of the satellite-based global terrestrial latent heat flux (LE) at high spatial and
temporal scales remains a major challenge. In this study, we introduce a Bayesian model averaging (BMA)
method to improve satellite-based global terrestrial LE estimation by merging five process-based algorithms.
These are the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product algorithm, the revised
remote-sensing-based Penman-Monteith LE algorithm, the Priestley-Taylor-based LE algorithm, the modified
satellite-based Priestley-Taylor LE algorithm, and the semi-empirical Penman LE algorithm. We validated the
BMA method using data for 2000–2009 and by comparison with a simple model averaging (SA) method and
five process-based algorithms. Validation data were collected for 240 globally distributed eddy covariance
tower sites provided by FLUXNET projects. The validation results demonstrate that the five process-based
algorithms used have variable uncertainty and the BMA method enhances the daily LE estimates, with smaller
root mean square errors (RMSEs) than the SA method and the individual algorithms driven by tower-specific
meteorology and Modern Era Retrospective Analysis for Research and Applications (MERRA) meteorological
data provided by the NASA Global Modeling and Assimilation Office (GMAO), respectively. The average RMSE
for the BMA method driven by daily tower-specific meteorology decreased by more than 5 W/m2 for crop and
grass sites, and bymore than 6W/m2 for forest, shrub, and savanna sites. The average coefficients of determination
(R2) increased by approximately 0.05 for most sites. To test the BMA method for regional mapping, we
applied it for MODIS data and GMAO-MERRA meteorology to map annual global terrestrial LE averaged
over 2001–2004 for spatial resolution of 0.05°. The BMAmethod provides a basis for generating a long-term
global terrestrial LE product for characterizing global energy, hydrological, and carbon cycles.

1. Introduction

The terrestrial latent heat flux (LE) (a list of acronyms is given in Table A1 of Appendix A) plays an important
role in exchanges of energy, water, and carbon among the terrestrial biosphere, hydrosphere, and
atmosphere. It is difficult to accurately estimate terrestrial LE because the land surface is generally more
heterogeneous than the sea surface and there is much uncertainty about complicated biophysical processes
[National Research Council, 2007; Kalma et al., 2008; Liang et al., 2010;Wang et al., 2010a, 2010b; Jia et al., 2012;
Liu et al., 2013]. Since the 1990s, eddy covariance (EC) flux towers provided by FLUXNET projects have been
used to measure LE. However, the sparse observations hamper accurate characterization of spatiotemporal
LE patterns over large spatial scales [Baldocchi et al., 2001; Serreze et al., 2005; Sun et al., 2005].

Remote sensing is considered as the most viable method for producing spatially distributed global or
regional LE products because it can effectively provide temporally and spatially continuous information on
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soil and vegetation variables for estimating LE, including the land surface temperature (LST), the normalized
difference vegetation index (NDVI), the enhanced vegetation index (EVI), the fraction of absorbed
photosynthetically active radiation (FPAR), albedo, biome type, and leaf area index (LAI) [Los et al., 2000; Liang
et al., 2010; Jin et al., 2011; Mu et al., 2011; Yao et al., 2013]. Currently, the existing satellite-based Global
Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) [Mu et al., 2011] has 1 km
spatial resolution and 8 day temporal resolution, but validation results indicate that the MODIS LE product
often overestimates LE at most AsiaFlux sites [Kim et al., 2012]. Other existing global LE products (including
satellite and reanalysis products), such as LandFlux-EVAL (merged benchmark synthesis products of
evapotranspiration, ET) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim reanalysis (ERA-Interim), have high temporal resolution (daily) but rather coarse spatial resolution
(>1°) [Simmons et al., 2006; Fisher et al., 2008;Wang and Liang, 2008; Zhang et al., 2010a, 2010b; Jiménez et al.,
2011; Mueller et al., 2011, 2013; Wang and Dickinson, 2012]. Therefore, there is still a need to estimate
terrestrial LE accurately at high spatial resolution (e.g., 1 km) but reasonable temporal resolution (e.g., daily).

During the past 30 years, there has been much effort to develop and design algorithms for terrestrial LE
estimation, as documented by a substantial body of literature[Monteith, 1965; Priestley and Taylor, 1972;
Norman et al., 1995; Li et al., 2009; Liang et al., 2010; Katul et al., 2012;Wang and Dickinson, 2012]. In general,
satellite-based LE methods can be grouped into four categories. (1) Statistical and empirical methods (SEMI)
involve the development of empirical equations using vegetation parameters or LST derived from satellites
and LE observations from flux tower sites [Jackson et al., 1977; Wang et al., 2007; Jung et al., 2010; Jin et al.,
2011; Yao et al., 2011a, 2011b]. (2) Surface energy balance (SEB) models estimate LE by calculating the
evaporation fraction (EF) from satellite data or by driving a residual SEB equation with remotely sensed
products and meteorological data [Norman et al., 1995; Kustas and Norman, 1996; Anderson et al., 1997;
Bastiaanssen et al., 1998; Allen et al., 2007]. (3) Penman-Monteith (PM) and Priestley-Taylor (PT) approaches
use PM and PT equations, respectively, to calculate LE [Monteith, 1965; Priestley and Taylor, 1972; Jiang and
Islam, 2001; Cleugh et al., 2007; Mu et al., 2007, 2011; Fisher et al., 2008; Zhang et al., 2009, 2010a; Tang et al.,
2010; Wang et al., 2010a, 2010b; Miralles et al., 2011; Yao et al., 2013]. (4) Data assimilation (DA) methods
assimilate satellite land-surface variables (e.g., LST) into land surface models (LSMs) to improve LE predictions
[Qin et al., 2007; Pipunic et al., 2008; Xu et al., 2011a, 2011b]. Although these approaches are widely used to
estimate regional or global land-surface LE, simulation results may differ substantially owing to differences in
the algorithms themselves and the calibrated coefficients. For example, a global intercomparison of 12 land-
surface heat flux estimates using different algorithms by Jiménez et al. [2011] revealed that many LE
algorithms show substantial differences in partitioning LE.

Merging multiple algorithms can be effectively used to estimate terrestrial LE with higher accuracy. Previous
studies showed that a traditional simple multimodel averaging method performs better than any individual
model for estimating climatic and hydrologic variables [Raftery et al., 1997, 2005; Madigan et al., 1999;
Houghton, 2001; Duan and Phillips, 2010; Wu et al., 2012]. Multimodel simulation-averaged LE data sets (e.g.,
LE product of the Global Soil Wetness Project-2, GSWP-2) have been widely used for comparison with other
LE products [Dirmeyer et al., 2006; Wang and Liang, 2008; Yao et al., 2011a]. More complicated merging
methods that calculate the weightings for individual algorithms based on ground measurements have
recently been designed to estimate variables for land-surface energy budgets [Wu et al., 2012]. In particular,
there is increasing interest in using the Bayesian model averaging (BMA) method for optimal weighting for
weather and hydrology predictions [Hoeting et al., 1999; Raftery et al., 2005; Duan et al., 2007; Duan and
Phillips, 2010; Wu et al., 2012]. In essence, BMA facilitates more accurate estimations of variables by pooling
information from multiple algorithms to generate ensemble predictions similar to a weighted average of
component forecasts. However, there is a lack of similar studies on improving global terrestrial LE estimates
using the BMA method for understanding energy and hydrologic cycles.

In this study we used the BMA method to improve satellite-based global terrestrial LE estimation by merging
five process-based LE algorithms. We had two major objectives. First, we evaluated the BMA method using
long-term FLUXNET measurements between 2000 and 2009 by comparison with a simple model averaging
(SA) method and five process-based algorithms. Second, we applied the BMA method to map annual global
terrestrial LE averaged over 2001–2004 with spatial resolution of 0.05° using MODIS data and Modern Era
Retrospective Analysis for Research and Applications (MERRA) meteorological data provided by the NASA
Global Modeling and Assimilation Office (GMAO).
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2. Data
2.1. Observations From Eddy Covariance Flux Towers

The BMA method, the SA method, and five traditional LE algorithms were validated and evaluated using
ground-measured flux data. The data were collected at 240 EC flux tower sites and provided by AmeriFlux,
AsiaFlux, LathuileFlux, the Chinese Ecosystem Research Network (CERN), the Coordinated Enhanced
Observation Network of China (CEOP), the Asian Automatic Weather Station Network (ANN) Project
supported by the Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME
ANN), and individual principal investigators (PIs) of the FLUXNET website. These flux towers are mainly
located in Europe, Asia, and North America, as well as seven flux towers in South America, five in Africa, and
five in Australia (Figure 1). The climate for the flux tower locations varies from humid to dry and from tropical
to frigid. The flux tower sites cover nine major global land-surface biomes: deciduous broadleaf forest (DBF;
28 sites), deciduous needleleaf forest (DNF; 6 sites), evergreen broadleaf forest (EBF; 16 sites), evergreen
needleleaf forest (ENF; 64 sites), mixed forest (MF; 12 sites), savanna (SAW; 10 sites), shrubland (SHR; 14 sites),
cropland (CRO; 34 sites), and grass and other types (GRA; 56 sites). These data sets include half-hourly or
hourly ground-measured incident solar radiation (Rs), relative humidity (RH), air temperature (Ta), diurnal air-
temperature range (DT), wind speed (WS), vapor pressure (e), sensible heat flux (H), surface net radiation (Rn),
ground heat flux (G), and LE. When available, data sets were gap filled by site principal investigators (PIs) and
daily data are aggregated from half-hourly or hourly data without using additional quality control [Liu et al.,
2011; Jia et al., 2012; Xu et al., 2013]. The data cover the period from 2000 to 2009 and each flux tower has at
least 1 year of reliable data. All turbulent flux observations were measured by the EC method. Although this is
considered a good method for measuring heat flux, it suffers from an unclosed energy problem [Twine et al.,
2000;Wilson et al., 2002; Jung et al., 2010]. Therefore, we used the method developed by Twine et al. [2000] to
correct the LE for all flux towers according to

LE ¼ Rn � Gð Þ= LEori þ Horið Þ � LEori (1)

where LE is the corrected latent heat flux, and Hori and LEori are the uncorrected sensible heat flux and latent
heat flux, respectively.

2.2. Satellite and Reanalysis Inputs to LE Algorithms

To evaluate the performance of all LE algorithms in this study for all flux tower sites, the five process-based
algorithms were driven by two different meteorological data sets: (1) daily point-based meteorological
observations from flux towers and (2) daily GMAO-MERRA meteorological data with spatial resolution of
1/2° × 2/3°. The 8 day MODIS FPAR/LAI (MOD15A2) product [Myneni et al., 2002] with 1 km spatial resolution
was used to drive the LE algorithms in this study, and the daily FPAR/LAI values were temporally interpolated
from the 8 day averages using linear interpolation. Similarly, the 16 day MODIS NDVI/EVI (MOD13A2) [Huete
et al., 2002] and MODIS albedo (MOD43B3) products [Liang et al., 1999; Schaaf et al., 2002] were also used to
validate the LEmodels. We temporally filled missing or cloud-contaminated albedo, LAI, FPAR, NDVI, and EVI for

Figure 1. Locations of the 240 eddy covariance flux towers used in this study.
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each 1 km MODIS pixel using the method described by Zhao et al. [2005]. According to this method, when
16 day albedo data (8 day LAI, 16 day NDVI/EVI) are not available, the closest reliable 16 day (8 day) values
replace the original data. To match MODIS pixels, we used the method proposed by Zhao et al. [2005] to
interpolate coarse-resolution GMAO-MERRA data to 1 km2 MODIS pixels. Theoretically, this spatial
interpolation method improves the accuracy of meteorological data for each 1 km pixel because it uses a
cosine function and the four GMAO-MERRA cells surrounding a given pixel to remove sharp changes from
one side of a GMAO-MERRA boundary to the other [Zhao et al., 2005].

To map global terrestrial LE over 2001–2004 with 0.05° spatial resolution using the BMA method, input data
for all the LE algorithms included 1/2° × 2/3° GMAO-MERRA meteorological data and MODIS data. We used
the method described by Zhao et al. [2005] to interpolate GMAO-MERRA data to 0.05° resolution over 2001–
2004. MODIS inputs included Collection 4 MODIS albedo (MOD43C1: CMG, 0.05°) [Jin et al., 2003; Salomon
et al., 2006], Collection 5 MODIS NDVI/EVI (MOD13C1: CMG, 0.05°) [Myneni et al., 2002], Collection 4 MODIS
land cover (MOD12C1: CMG, 0.05°) [Friedl et al., 2002], and the Collection 5 MODIS FPAR/LAI (MOD15A2) with
spatial resolution of 1 km. Furthermore, the enhanced 1 km2 LAI/FPAR has been aggregated into 0.05° data
using bilinear interpolation with geographic projection. Detailed information on these inputs for mapping
global terrestrial LE is summarized in Table 1.

3. Methods
3.1. Process-Based Latent Heat Flux Algorithms

We used five process-based LE algorithms in this study. For simplicity, the algorithms are denoted by their
abbreviations in figure legends (e.g., Revised Remote-Sensing-Based Penman-Monteith (RRS-PM)). The
algorithms (Table 2) are briefly described below.
3.1.1. MODIS LE Product Algorithm (MOD16)
The MODIS LE product algorithm (MOD16) is based on a beta version [Mu et al., 2007] developed from the
Cleugh et al. [2007] version using a PM approach [Monteith, 1965]. Mu et al. [2011] improved the beta
version by (1) revising vegetation cover fraction with FPAR, (2) estimating LE as the sum of daytime and
nighttime components, (3) improving calculations of aerodynamic, boundary-layer, and canopy resistance,
(4) estimating the soil heat flux using available energy and simplified NDVI, (5) dividing the canopy into wet
and dry components, and (6) separating moist soil surfaces from saturated wet ones. The MOD16 algorithm
was evaluated at 46 EC flux tower sites and has been successfully extended to generate a MODIS global

Table 1. GMAO-MERRA and MODIS Products for Mapping Global Terrestrial LE Used in This Study

Products Short Name Spatial Resolution Variables Acquired

GMAO-MERRA reanalysis product GMAO-MERRA 1/2° × 2/3° Rs, Rn, Ta, Tmax, Tmin, e, RH, WS
MODIS albedo product MOD43C1 0.05° Albedo
MODIS NDVI/EVI product MOD13C1 0.05° NDVI, EVI
MODIS land cover product MOD12C1 0.05° Land cover
MODIS FPAR/LAI product MOD15A2 1 km FPAR, LAI

Table 2. Summary of the Five Process-Based LE Algorithms and Forcing Input Variables

LE Algorithm Forcing Inputs Institute References

MODIS LE products algorithm (MOD16) Rn, Ta, Tmin, e, RH, LAI, land
cover, FPAR

Numerical Terradynamic Simulation Group
Department of Ecosystem and Conservation

Sciences, University of Montana, USA

Mu et al. [2011]

Revised remote-sensing-based
Penman-Monteith
LE algorithm (RRS-PM)

Rn, Ta, e, RH, LAI, EVI State Key Laboratory of Earth Surface
Processes and Resource Ecology,
Beijing Normal University, China

Yuan et al. [2010]

Priestley-Taylor LE algorithm of Jet
Propulsion Laboratory, Caltech (PT-JPL)

Rn, Ta, Tmax, e, RH, LAI,
NDVI, FPAR

Jet Propulsion Laboratory, California
Institute of Technology, USA

Fisher et al. [2008]

Modified satellite-based Priestley-Taylor
LE algorithm (MS-PT)

Rn, Ta, Tmax, Tmin, NDVI State Key Laboratory of Remote Sensing Science,
Beijing Normal University, China

Yao et al. [2013]

Semiempirical Penman LE algorithm of the
University of Maryland (UMD-SEMI)

Rs, Ta, e, WS, RH, NDVI Department of Geography, University of Maryland,
College Park, Maryland, USA

Wang et al. [2010a]
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terrestrial LE product driven by MODIS land cover, albedo, and LAI/FPAR, and a GMAO daily meteorological
reanalysis data set [Mu et al., 2011].

Except for the MOD16 LE algorithm, the other four LE algorithms used in this study all neglect nighttime LE
because most LE occurs during daytime. For consistency, we calculated daytime LE by using the MODIS LE
algorithm with the daytime-averaged meteorological data as input.
3.1.2. Revised Remote-Sensing-Based Penman-Monteith LE Algorithm (RRS-PM)
The beta version of the MOD16 algorithm [Mu et al., 2007] has a good physical basis in terms of a PM equation
and constraint parameters of air temperature and vapor pressure deficit (VPD) that differ for different
vegetation types. However,Yuan et al. [2010] found that it is possible to set invariant model parameters across
different vegetation types to reduce the effects of misclassification of land cover types. Therefore, Yuan et al.
[2010] developed a revised remote-sensing-based PM LE algorithm (RRS-PM) by revising the algorithm
parameters, modifying the air temperature constraint for vegetation conductance, and improving calculation
of the vegetation cover fraction using EVI. Validation for 23 EC flux tower sites in China revealed higher
squared correlation coefficients (R2) and lower root-mean-square errors (RMSEs) for the RRS-PM algorithm
than for the beta version of the MOD16 algorithm [Chen et al., 2014].
3.1.3. Priestley-Taylor-Based LE Algorithm (PT-JPL)
To avoid the complexity of parameterizations of both aerodynamic and surface resistance, Priestley and Taylor
[1972] reduced the atmospheric control term in the PM equation and added an empirical factor to design a
simple LE algorithm. On the basis of this algorithm, Fisher et al. [2008] proposed a novel PT-based LE
algorithm (PT-JPL) by introducing both atmospheric (RH and VPD) and ecophysiological constraints (FPAR
and LAI) without using any ground-based observed data. The PT-JPL method was validated at 16 global
FLUXNET sites and the simulation-to-measurement R2 was 0.90 (RMSE= 15.2 W/m2 or 28%) for all sites during
2 years. It has been applied to estimate global terrestrial LE driven by the Advanced Very High Resolution
Spectroradiometer (AVHRR) satellite products and the International Satellite Land Surface Climatology
Project, Initiative II (ISLSCP-II) data sets [Hall et al., 2006; Jiménez et al., 2011].
3.1.4. Modified Satellite-Based Priestley-Taylor LE Algorithm (MS-PT)
To reduce the atmospheric inputs for the PT-JPL algorithm,Yao et al. [2013] used the apparent thermal inertia
(ATI) derived from DT to parameterize surface soil moisture constraints and the revised linear two-source
model (N95) to estimate vegetation transpiration [Norman et al., 1995; Anderson et al., 1997; Yao et al., 2013].
This MS-PT algorithm estimates LE from four components: saturated wet soil evaporation, unsaturated wet
soil evaporation, vegetation transpiration, and evaporation from vegetation interception. MS-PT is an
operational satellite method for estimating global terrestrial LE because it only requires Rn, air temperature,
DT, and NDVI as inputs. According to validation for 16 EC flux tower sites throughout China, the average RMSE
between measured and predicted site-averaged daily LE was approximately 5 W/m2 lower (99% confidence)
for the MS-PT compared to the PT-JPL algorithm [Yao et al., 2013].
3.1.5. Semiempirical Penman LE Algorithm of the University of Maryland (UMD-SEMI)
There are no satellite-based LE methods available for detecting global LE variations on a scale of several
decades because of a lack of long-term satellite and ground-measured data [Wang et al., 2010a, 2010b].
Therefore, Wang et al. [2010a] developed a semiempirical LE algorithm based on the Penman equation
[Penman, 1948]. This UMD-SEMI method mainly considers the impact of incident solar radiation, air
temperature, VPD, RH, vegetation indices, and wind speed to predict global terrestrial LE variability. It is the
only method that explicitly includes wind speed, which may play an important role in annual or decadal LE
variability [Skidmore et al., 1969;Wang et al., 2010a, 2010b;McVicar et al., 2012]. Comparison of measured and
predicted daily LE at 64 globally distributed flux tower sites demonstrated that the 16 day average daily LE
can be reasonably predicted with an average correlation coefficient of 0.94 and average RMSE of 17 W/m2

[Wang et al., 2010a, 2010b].

3.2. Bayesian Model Averaging Method

Here we used the Bayesian model averaging (BMA) method to merge five process-based LE algorithms to
estimate terrestrial LE. The predictive probability density function (PDF) for LE is a weighted average of the
PDFs for the individual models, weighted by their posterior model probability [Raftery et al., 1997; Hoeting
et al., 1999; Duan and Phillips, 2010;Wu et al., 2012]. The BMA method can improve LE accuracy by adjusting
the predictive PDF to obtain a good fit to a set of tower-based LE observations.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020864

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4525



The BMA method considers a predictive variable y, the corresponding observation data at a given time t (yt),
and an ensemble model F{M1,M2,…,Mf } for variable y. In this study, y refers to predicted LE and f=5. The law
of total probability tells us that the predictive PDF, p(y), can be expressed as

p yjM1;M2;…;Mfð Þ ¼
Xf

i¼1

p y MiÞ • p Mi ytÞjðjð (2)

where p(y|Mi) is the predictive PDF usingmodelMi alone and p(Mi|yt) denotes the posterior probability that model

Mi is correct given the corresponding observation data. In general, p(Mi|yt) can be considered as a statistical weight

ui, which reflects howwellMimatches the observation data, and
Xf

i¼1

ui ¼ 1. Thus, equation (2) can be expressed as

p yjM1;M2;…;Mfð Þ ¼
Xf

i¼1

ui • p y MiÞjð (3)

It is reasonable to assume that p(y|Mi) meets a normal distribution defined by a mean eMi and a variance ω2
i

[Raftery et al., 2005;Duan and Phillips, 2010;Wu et al., 2012]. Assuming the parameter vectorθi ¼ eMi;ω2
i

n o
and a

conditional density function h(�) as the PDF associated with the normal distribution, this can be written as

p y MiÞ ¼ h y θiÞjðjð (4)

Combining equations (3) and (4), we obtain

p yjM1;M2;…;Mfð Þ ¼
Xf

i¼1

ui • h y θiÞjð (5)

The conditional expectation (E) of y is the ultimate BMA predictive LE for merging five process-based
algorithms and can be expressed as

E yjM1;M2;…;Mfð Þ ¼
Xf

i¼1

ui • eMi (6)

where eMi is the estimated LE using each single algorithm. To obtain both ui and θi, a log likelihood function l
from the Gaussian function h on the basis of training observational data can be used. The log likelihood
function can be expressed as

l θ1; θ2;…; θfð Þ ¼
X

s;tð Þ log
Xf

i¼1

ui •h ys;tjθi
� �" #

(7)

where∑ (s,t) refers to the summation of observed LE values over all spatial points s and time points t; ys,t is an
observed LE value at location s and time t. The BMA method can estimate the Bayesian weights ui and
parameter vectors θi when the log likelihood function l is maximized [Raftery et al., 1997; Duan and Phillips,
2010]. We maximize the log likelihood function l using the expectation-maximization (EM) algorithm, which
has been described elsewhere [Raftery et al., 1997; Duan and Phillips, 2010].

To assess the terrestrial LE accuracy, we tested the performance of our BMAmethod using the holdout method,
which is a simple type of cross validation [Mo et al., 2004; Yao et al., 2011a]. The data set is randomly stratified
into two groups with approximately equal numbers of samples. We calibrated the weights using data from
the first group and independently validated daily LE using data from the second group. We then calculated the
weights using data from the second group and independently validated daily LE using data from the first
group. We also used all of the data to calculate the weights for producing global terrestrial LE products.

3.3. Simple Model Averaging Method

For comparison with LE estimates based on the BMA method, we also used a simple model averaging (SA)
method to merge the five process-based LE algorithms. The SA method is a simplified version of the BMA
method that considers the weight for any individual algorithm as a constant (1/f ). It can be expressed as

LESA ¼ 1
f

Xf

i¼1

LEi (8)

where LESA and LEi are terrestrial LE predicted using the SA method and each single process-based LE
algorithm, respectively.
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3.4. Model Performance

We used Taylor diagrams to evaluate the performance of the individual LE algorithms, the SA method, and
the BMA method to qualify how closely the simulated LE matched the ground observations [Taylor, 2001]. A
Taylor diagram is a polar-style graph including the correlation coefficient (R) between simulations and
observations, the centered RMSE, and the standard deviation (STD). The radial distance from the origin
reflects STD, the cosine of the azimuth angle gives R, and the radial distance from the observed point is
proportional to the centered RMSE difference between simulations and observations. Taylor diagrams are
particularly beneficial in evaluating the relative accuracy of different complex models. We also summarized
the average bias and p values for the estimated LE and those derived from tower data to evaluate the relative
predictive errors for different LE models.

4. Results
4.1. Evaluation of the BMA Method for Merging Terrestrial LE Algorithms
4.1.1. Comparison of Five Process-Based LE Algorithms
At the flux tower site scale, the five process-based LE algorithms exhibit substantial differences in LE
modeling. Table 3 and Figure 2 compare daily LE observed at 240 EC flux tower sites according to land cover
types with estimates driven by tower meteorology and GMAO-MERRA meteorology, respectively. For DBF
and DNF sites, average RMSEs are lower for the MS-PT and UMD-SEMI algorithms than for the other
algorithms, and the average bias for these two algorithms is less than 17W/m2 for tower-driven meteorology.
In contrast to the tower data as inputs, the results driven by GMAO-MERRAmeteorology showed average bias
of approximately 18 W/m2 for the MS-PT and UMD-SEMI algorithms. The MOD16 algorithm has the highest
average STD, and the RRS-PM algorithm has the second highest STD and the greatest bias. It is clear that the
MOD16 and RRS-PM algorithms both underestimate terrestrial LE, but the PT-JPL, MS-PT, and UMD-SEMI
algorithms overestimate terrestrial LE for DBF and DNF towers. This can be attributed to differences in
calibrated coefficients for the different algorithms. In particular, the performance of the UMD-SEMI algorithm
is strongly related to the regression coefficients because it was calibrated using the data from 64 flux tower
sites (including 26 flux tower sites used in this study) over the U.S., East Asia, and Australia. Therefore, the
UMD-SEMI algorithm is one of the algorithms that provide a better fit to flux tower observations.

For ENF and MF sites, the tower-driven MS-PT model has the lowest average RMSE, with average bias of 14.2
and 12.3 W/m2, respectively. The tower-driven RRS-PM algorithm shows the second lowest average RMSE,

Table 3. Averaged Bias for 240 EC Flux Sites With the Same Land Cover Typea

Land Cover Type Forcing Data

Bias

MOD16 RRS-PM PT-JPL MS-PT UMD-SEMI

DBF Tower-specific �19.8 �19.6 18.1 16.7 8.8
GMAO-MERRA �21.8 �21.1 10.4 17.8 17.6

DNF Tower-specific �18.2 �19.1 10.8 10.3 8.7
GMAO-MERRA �13.5 �12.9 18.4 18.1 17.4

EBF Tower-specific �12.2 �17.8 22.1 18.3 9.5
GMAO-MERRA �19.3 �19.5 22.8 19.8 2.9

ENF Tower-specific �10.6 �17.4 22.4 14.2 6.7
GMAO-MERRA �10.8 �18.1 14.5 �1.8 5.9

MF Tower-specific �13.8 �13.5 10.4 12.3 5.7
GMAO-MERRA �2.8 �9.9 19.3 8.6 9.3

SHR Tower-specific �4.5 �17.4 17.3 10.1 12.9
GMAO-MERRA �3.8 �16.6 18.3 1.2 1.8

SAW Tower-specific �16.2 �18.2 19.7 12.1 15.6
GMAO-MERRA �22.5 �23.2 11.8 �2.8 2.9

CRO Tower-specific �30.2 �33.6 �4.5 �12.7 �2.3
GMAO-MERRA �28.7 �32.4 �1.2 �7.9 �2.4

GRA Tower-specific �25.2 �26.7 �1.8 �8.2 �3.6
GMAO-MERRA �25.4 �26.9 �1.2 �4.4 �2.5

aValues are in W/m2.
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Figure 2. Taylor diagrams for daily LE observations and LE estimates using different algorithms driven by (a) tower-specific
meteorology and (b) GMAO-MERRA meteorology at all 240 EC sites.
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with average bias of �17.4 and �13.5 W/m2, respectively, while the tower-driven MOD16 algorithm has
the highest average RMSE. Similar conclusions are drawn for algorithms driven by GMAO-MERRA
meteorology. In general, the ENF canopy conductance is half that of deciduous forests [Eugster et al., 2000]
and the MS-PT algorithm may capture this information by parameterization of the vegetation index
[Yao et al., 2013, 2014].

The PT-JPL algorithm highly overestimates terrestrial LE at EBF sites. In contrast, the MOD16, MS-PT, and
UMD-SEMI algorithms show relatively lower bias. Among the tower-driven algorithms, MOD16 has the lowest
average RMSE, with average bias of�12.2W/m2 for all 16 EBF sites. However, for GMAO-MERRA meteorological
data as inputs, the UMD-SEMI algorithm has the highest R2, with an average R2 of 0.52 (p< 0.01) for all 16 EBF
sites. In general, most EBF sites are located in tropical and subtropical zones, and atmospheric control factors
improve the LE parameterization under most humid conditions because VPD and wind speed affect LE via
boundary-layer processes [Rodriguez-Iturbe et al., 2007; Zhao and Running, 2010; Wang and Dickinson, 2012].
Only the UMD-SEMI algorithm, which is based on EC data calibration, considers the effects of wind speed. The
MOD16 algorithm effectively considers the effects of VPD by using a look-up table for updating biome
properties to adjust the VPD constraint [Mu et al., 2007, 2011].

For SHR and SAW sites, although average RMSEs are higher for the MS-PT than for the UMD-SEMI algorithm, its
daily average LE estimates are lower than those of the other algorithms. For instance, for all 14 SHR sites, the
MS-PT algorithm has higher average RMSE (39.8 and 37.7 W/m2) and lower average R2 (0.60 and 0.63, p< 0.01)
than the UMD-SEMI algorithm (RMSE: 38.2 and 36.3W/m2; R2: 0.64 and 0.68, p< 0.01) when driven by tower and
GMAO-MERRA meteorological data, respectively. However, the magnitude of average daily LE estimated
using the MS-PT algorithm is much closer to tower-measured LE and the MS-PT algorithm has lower
average bias (10.1 and 1.2 W/m2) than the UMD-SEMI algorithm (12.9 and 1.8 W/m2) when driven by tower
and GMAO-MERRAmeteorological data, respectively. This indicates that the MS-PTalgorithm performs well
under sparse vegetation conditions.

The UMD-SEMI algorithm shows lower RMSEs and R2 for CRO and GRA sites but the differences were
significantly below the confidence level of p< 0.05. Its average RMSE is 43.5 W/m2 (55.1 W/m2) for the 34 CRO
sites and 38.7 W/m2 (49.4 W/m2) for the 56 GRA sites for tower-specific (GMAO-MERRA) meteorology. The
validation results reveal average RMSE differences between tower-driven LE and GMAO-MERRA-driven LE for
all five algorithms. This indicates that different algorithm parameterizations affect the accuracy of process-
based terrestrial LE algorithms.
4.1.2. Cross Validation of the BMA Method
None of the individual LE algorithm provides the best LE estimate for all vegetation types. Therefore, we used
the BMA method to estimate terrestrial LE by integrating five process-based LE algorithms driven by tower-
specific meteorology and GMAO-MERRA meteorology, respectively. All LE algorithms chosen in this study
underestimate terrestrial LE at CRO and GRA sites, and the MOD16 and RRS-PM algorithms have the highest
absolute values for average bias (<�25W/m2) for these sites. To reduce the BMA bias, the MOD16 and RRS-PM
algorithms were therefore excluded from the multi-algorithm ensemble for CRO and GRA sites.

Terrestrial LE estimates calculated using the BMA method were compared with those for the SA method and
the individual algorithms for each land cover type. Figure 3 compares daily LE observations and BMA estimates
for the first group using the second group as training data to calibrate the weights of the five algorithms driven
by tower-specific and GMAO-MERRA meteorology, respectively. The most prominent feature in Figure 3 is that
the BMAmethod agrees best with observations that lie nearest the point marked “observed” on the x axis, and
the BMA method has higher R2 (95% confidence) and lower RMSE compared to the SA method and the
individual algorithms driven by tower-specific (GMAO-MERRA) meteorology at all 120 EC sites with different
land cover types. For the 63 forest sites using BMA driven by tower-specific (GMAO-MERRA) meteorology,
the average RMSE is 42.2 W/m2 (49.4W/m2) and is lower than for the SA method and the individual
algorithms, and the average R2 is approximately 0.72 (0.67) (p< 0.01). For the 12 SHR and SAW sites using
BMA driven by tower-specific (GMAO-MERRA) meteorology, the average RMSE is less than 40 W/m2 (41 W/m2)
and the average R2 is greater than 0.68 (0.64) (p< 0.01), which represents better performance than that of
the SA method and the individual algorithms. For the 45 CRO and GRA sites, the average RMSE is much
lower and the average R2 is slightly higher for the BMA method compared to the SA method and the
individual algorithms. Overall, the average RMSE of the BMAmethod for tower-specific meteorology inputs
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Figure 3. Taylor diagrams for daily LE observations and LE estimates using different algorithms driven by (a) tower-specific
meteorology and (b) GMAO-MERRA meteorology at 120 EC sites. Simulations are for the first group and the second group
was used as training data to calibrate the algorithm weights.
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decreased by more than 5 W/m2 for crop and grass sites and more than 6 W/m2 for forest, shrub, and
savanna sites. The average R2 increased by approximately 0.05 at the 95% level of confidence for most sites.
Figure 4 presents a time series for 8 day average LE measurements and tower-driven predictions for the
first group of data for different land cover types. In comparison to the SA method and the individual
algorithms, the BMA method yields seasonal LE variations that are closest to the ground-measured values.
Similar conclusions can be drawn from BMA LE estimates for the second group of flux towers using the first
group data to calibrate the weights (Figure 5).

Figure 4. Example of a time series for the 8 day LE average as measured and predicted using different tower-driven algo-
rithms for different land cover types from the first group. The pie charts show the relative contribution of each algorithm to
the merged LE for the second group.
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Figure 5. Taylor diagrams for daily LE observations and LE estimates using different algorithms driven by (a) tower-specific
meteorology and (b) GMAO-MERRA meteorology at 120 EC sites. Simulations are for the second group and the first group
was used as training data to calibrate the algorithm weights.
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Figure 6. Weights for five process-based LE algorithms driven by (a) tower-specific meteorology and (b) GMAO-MERRA
meteorology according to the BMA method for all land cover types (DBF, DNF, EBF, ENF, MF, SHR, SAW, CRO, and GRA).
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To estimate global terrestrial LE according to the BMA method, all the data collected at 240 sites were
considered as training data to determine weights for the individual LE algorithms for each land cover type.
Figure 6 presents the weights for the five process-based LE algorithms for tower-specific and GMAO-MERRA
meteorology inputs, respectively. The relative contributions vary for different land cover types. For example,
MS-PT has the highest weight for DBF sites and MOD16 has the highest weight for EBF sites for tower-specific
meteorology inputs. The MS-PT algorithm weight ranges from 17% to 31% for all land cover types,
reflecting its low RMSE for LE estimates compared to the other algorithms. The cross validation also reveals that

Figure 7. Comparison of monthly LE observations for all 240 flux tower sites and LE estimates using different algorithms
driven by tower-specific meteorology.
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MS-PT and UMD-SEMI LE estimates closely match the BMA LE estimate for most land cover types. Therefore,
their contributions to the BMA LE are greater than for those of the other algorithms.

Figures 7 and 8 compare monthly LE observations at all 240 sites and LE estimates for the different algorithms
driven by tower-specific and GMAO-MERRA meteorology, respectively. The results illustrate that the BMA
method yields the best LE estimates, with the lowest RMSE (32.8 and 35.3 W/m2) and highest R2 (0.80 and 0.75)
(p< 0.01) in comparison to the SA method and the individual algorithms for tower and GMAO-MERRA
meteorological data, respectively. The error histograms for BMA are more closely centered on zero, and the

Figure 8. Comparison of monthly LE observations for all 240 flux tower sites and LE estimates using different algorithms
driven by GMAO-MERRA meteorology.
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individual algorithms are more biased with respect to the tower observations (Figure 9). Previous studies
showed that the terrestrial LE retrieved from remote sensing has a relative error of approximately 15–30%
[Kalma et al., 2008; Wang and Dickinson, 2012] while the relative error of the BMA method driven by eddy
covariance, GMAO-MERRA, and satellite observations is about 9.7%, with an average R2 of 0.87 (p< 0.01).
Therefore, the BMAmethod can be used to substantially improve the accuracy of satellite-derived LE estimates.

4.2. Mapping of BMA-Based Global Terrestrial LE

We applied the five process-based algorithms, the SA method, and the BMA method globally for 2001–2004 at a
spatial resolution of 0.05° usingGMAO-MERRAmeteorological data andMODIS products as described in section 2.2.
Figure 10 shows maps of annual global terrestrial LE averaged over 2001–2004. Despite the general differences in

Figure 9. Error histograms for monthly LE according to five process-based algorithms, the BMA method, and the SA
method driven by GMAO-MERRA meteorology for all flux towers. The unit for the x axis is W/m2.
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spatial LE distributions among different models, all of the models yield highest annual LE over tropical forests in
Africa, South America, and Southeast Asia, whereas arid and desert regions in temperate and subtropical zones and
the Arctic have the lowest annual LE owing tomoisture limitations and their short growth seasons. Average annual
global terrestrial LE according to the BMA method is 38.6 W/m2, which is higher than values according to the
MOD16 (35.2 W/m2) and RRS-PM algorithms (36.4 W/m2) and lower than values according to the SA method
(39.5W/m2) and the PT-JPL (40.3 W/m2), MS-PT (42.1 W/m2), and UMD-SEMI algorithms (41.5 W/m2). According to
the BMAmethod, EBF has the highest average LE (88.8W/m2), followed by SAW (65.4W/m2), DBF (60.1W/m2), CRO
(45.7 W/m2), GRA (39.4 W/m2), MF (37.6 W/m2), ENF (34.3 W/m2), SHR (30.6 W/m2), and DNF (28.9 W/m2).

5. Discussion
5.1. Performance of the BMA Method

Cross validation for 240 globally distributed EC flux tower sites demonstrated that the BMA approach for
merging five process-based LE algorithms is reliable and robust for most land cover types. Figures 3 and 5
both show that the BMAmethod has no significant LE bias and yields the closest LE to tower flux data relative to
the SA method and the individual algorithms. However, for CRO and GRA sites, when more than two of the
individual algorithms significantly underestimate LE compared to ground-measured data, BMA merging may

Figure 10. Maps of annual global terrestrial LE averaged for 2001–2004 at spatial resolution of 0.05° according to five pro-
cess-based algorithms, the SA method, and the BMA method driven by GMAO-MERRA meteorology.
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lead to large LE bias. When the two worst algorithms for LE estimation for CRO and GRA sites (MOD16
and RRS-PM) were excluded, the BMA performance greatly improved.

We found that the BMA method shows large interbiome differences and it performs better for DBF, SAW, and
CRO sites. For example, BMA can account for 62–85% of the LE variability for 28 globally distributed DBF EC flux
tower sites. Several studies have revealed that some satellite-based LE algorithms, such as the surface energy
balance system (SEBS), PT-JPL, and the vita version of MOD16, can yield considerably better LE estimates
for seasonal vegetation types such as DBF [Mu et al., 2007; Fisher et al., 2008; Vinukollu et al., 2011a, 2011b;
Yebra et al., 2013]. These LE algorithmsmay exhibit strong seasonality for vegetation indices or LAI derived from
remotely sensed data for accurate capture of information on seasonal changes in vegetation [Yebra et al., 2013].
Thus, the BMA approach for merging these LE algorithms improves the accuracy of LE quantification. By
contrast, the BMAmethod yields poor LE estimates for EBF sites (average RMSE 56.4 W/m2 and average R2 0.58
for GMAO-MERRA inputs; Figure 3). Our results indicate that the five process-based LE algorithms considered
here exhibit poor LE modeling performance for EBF sites. This may be attributable in part to the fact that
seasonal EBF variation is less evident when satellite-derived vegetation indices (e.g., NDVI) saturate
asymptotically and signal contamination of MODIS vegetation indices by broken clouds hampers the provision
of reliable vegetation information, especially over tropical forests [Huete et al., 2002; Demarty et al., 2007].

For merging multiple LE algorithms, the BMA method outperforms the SA method for most flux tower sites.
For example, daily LE estimates for the first group of MF flux towers, the average RMSE is 38.3 W/m2 and
R2 =0.76 for the BMA approach, while the average RMSE is 40.7W/m2 and R2 =0.70 for the SAmethod (Figure 3).
This may be because the weights for individual LE algorithms play an important role in algorithm fusion and the
BMA method considers an ensemble distribution that has first and second processes to correct bias using
ground-measured LE as training data in calculating algorithm weights whereas the SA method calculates
weights by simple averaging of values without any auxiliary data. Similar conclusions have been drawn for
algorithm fusion for other meteorological variables. For instance, Raftery et al. [2005] found that BMA yields a
deterministic forecast of sea-level pressure in the Pacific Northwest, with RMSE 11% lower than for any of the
ensemble members and 6% lower than for the ensemble mean. We conclude that the BMA method presented
here performs better than the SA method and the individual LE algorithms in estimating terrestrial LE.

The accuracy of BMA-based LE estimates depends on the errors for EC LE observations, the LE simulation
accuracy of individual algorithms, and selection of the conditional density function. EC LE observations
directly determine the accuracy of BMA-based LE estimates because we consider EC LE observations as true
values in calculating the weights for individual LE algorithms. However, EC observations do not correspond to
true absolute LE because of ambiguous value interpretations, and the typical error for EC LE is approximately
20–50 W/m2 [Mahrt, 2010; Vickers et al., 2010]. An important problem regarding EC observations is an energy
imbalance, whereby LE +H< Rn� G, and the average energy closure ratio (LE +H)/(Rn� G) for more than 250
FLUXNET flux towers is approximately 0.8 [Beer et al., 2010]. Although Foken [2006] documented several
reasons for this energy imbalance and we corrected LE data measured at EC flux towers in this study, the
uncertainty for energy correction arising from the closure error remains unclear [Twine et al., 2000;
Shuttleworth, 2007; Zhang et al., 2009, 2010a]. Moreover, the pixel average for MODIS-based LE estimation is
1 km, whereas EC observations can only represent a small scale of several hundred meters [Li et al., 2008;
McCabe and Wood, 2006], which may lead to large differences between LE observations and the true LE.

The LE accuracy of individual algorithms has a significant impact on the accuracy of the BMAmethod because it
is used to calculate the predictive PDF to get a good fit to EC LE observations. Several previous studies have
shown that model input errors, spatial scale mismatch among different data sources, and the limitations of the
algorithm itself all affect the accuracy of LE estimated by an individual algorithm [Mu et al., 2007, 2011; Vinukollu
et al., 2011a, 2011b; Shi and Liang, 2013; Yebra et al., 2013; Chen et al., 2014], which may indirectly affect the
performance of the BMAmethod. Validation results in a recent study revealed bias for both GMAO-MERRA data
andMODIS LAI data when compared to groundmeasurements [Heinsch et al., 2006; Serbin et al., 2013]. This may
be an important factor that leads to substantial bias for LE estimated using individual algorithms and BMA
ensembles [Yang et al., 2006; Zhao et al., 2006; Demarty et al., 2007;Mu et al., 2011]. In addition, we used GMAO-
MERRA products with spatial resolution of 1/2° × 2/3° andMODIS products with resolution of 1 km (LAI/FPAR and
NDVI) or 0.05° (NDVI). In both cases, the resolution is greater than footprint for field measurements, which is
usually 2–5 m [Zhao et al., 2006; Baldocchi, 2008]. Thus, accurate meteorological and vegetation information
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forflux tower sites cannot be acquired using only these products because of their coarse spatial resolution
[Zhang et al., 2010a]. Such representation of the field measurement footprint may also lead to bias in the BMA
method for surface LE. Moreover, the LE algorithmswe used do not include the effects of CO2 on LE [Zhang et al.,
2009; Mu et al., 2011; Yao et al., 2013] and this limitation will also reduce the accuracy of BMA-based LE.

The conditional density function h(y|θi) is widely recognized as a core regulator of the BMA method for
ensembles of meteorological or hydrological variables and it determines the method performance [Hoeting
et al., 1999; Raftery et al., 2005; Duan and Phillips, 2010]. Here we assumed that h(y|θi) is a reasonable normal
density in the BMA method. In general, this works well for surface energy variables such as surface air
temperature, and shortwave and longwave radiation [Wu et al., 2012; Miao et al., 2013; Shi and Liang, 2013].
However, normal densities may not apply to water variables such as precipitation and runoff because they have
a positive probability and their distribution tends to be skewed [Raftery et al., 2005; Yang et al., 2012]. Therefore, a
Gamma distribution is a suitable replacement when merging multiple precipitation products [Yang et al., 2012].
In contrast, LE is a complicated variable that couples energy, hydrological, and carbon budgets, and it is difficult
to accurately determine the conditional densities for the BMA method. Although we used normal densities to
optimize weights for integration of predictive distributions for the five process-based LE algorithms and the
cross validation confirmed good model performance, selection of the optimal conditional density function for
BMA merging multiple LE algorithms remains a key topic for future research. In addition, we only used normal
densities to calculate weights for the five process-based LE algorithms for different land cover types without
considering weight differences for different growth seasons and climate spaces for land vegetation. However,
some vegetation, such as GRA, represents a great variety in climate space, and the behavior and parameter
values for LEmay be slightly different formidlatitude and arctic/polar regions [Priestley and Taylor, 1972;Norman
et al., 1995;Wang and Dickinson, 2012]. Thus, the accuracy of the BMAmethod for LE estimation may be slightly
lower for different growth seasons and climate spaces. The effects of growth seasons and climate spaces on the
LE algorithm weights will be introduced in future work to improve the accuracy of long-term global terrestrial
LE estimates.

5.2. BMA-Based Global Terrestrial LE Estimation

Although rigorous validation of global terrestrial LE is difficult owing to the lack of spatial continuous flux
measurements for heterogeneous continental landscapes, we demonstrated the reliability of the BMA
method by comparison with other hydrological and satellite models. The BMA-based estimate of annual
average global terrestrial LE is 38.6 W/m2, which is comparable to simulated LE values reported in the
literature. Trenberth et al. [2007] estimated global land-surface ET using a residual for precipitation and runoff

Figure 11. Mean annual LE averaged globally for the different data sets. MODIS, MODIS LE product [Mu et al., 2011];
LandFlux-EVAL, merged benchmark synthesis LE product [Mueller et al., 2013]; AVHRR-ET, GIMMIS-NDVI-based ET product
[Zhang et al., 2010a]; SA, SA-based merged LE product used in this study; BMA, BMA-based merged LE product used in this
study; GSWP, LE product of the Global Soil Wetness Project [Dirmeyer et al., 2006]; GLDAS, Global Land Data Assimilation
System LE product [Kumar et al., 2006]; ERA-Interim, Interim Reanalysis LE product of the European Centre for Medium-
Range Weather Forecasts (ECMWF) [Simmons et al., 2006]; NCEP, Reanalysis LE product of the National Centers for
Environmental Prediction (NCEP) [Kalnay et al., 1996]; MERRA, Reanalysis LE product of the Modern Era Retrospective
Analysis for Research and Applications (MERRA)[Bosilovich, 2008]; JRA-25, LE product of the Japanese 25-year Reanalysis
[Onogi et al., 2007]; IPCC AR4, LE estimation according to model projections by the Intergovernmental Panel on Climate
Change (IPCC) Fourth Assessment Report (AR4) [Mueller et al., 2011]; WB, ET derived from water balance equations
[Trenberth et al., 2007]; CSIRO, ET product of the Commonwealth Scientific and Industrial Research Organization of Australia
(CSIRO) [Zhang et al., 2010b].
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and found that the volume of water evaporated annually is 72.6 × 103 km3 (34.1 W/m2). The annual global LE
estimate using 15 models for GSWP-2 is approximately 34.2 W/m2 [Dirmeyer et al., 2006;Wang and Dickinson,
2012]. Zhang et al. [2010a] reported average annual ET of 635 ± 200 mm (49.4 ± 15.6 W/m2) based on a PM
combination equation driven by 1983–2006 satellite records. Wang and Dickinson [2012] compared 17
different LE data sets and inferred that the global average LE estimated from multiple models is between
1.2 mm/d (34.1 W/m2) and 1.5 mm/d (42.7 W/m2), with an average of 1.3mm/d (36.9 W/m2). Figure 11 shows
the mean annual values averaged globally for the different data sets and the BMAmethod yields a result that
falls within the Wang and Dickinson range.

Spatial differences between BMA-merged LE and other LE estimates according to different algorithms are
much greater than those for the global mean values. Figure 12 shows spatial differences in annual global
terrestrial LE between the BMA and SA methods. Relative to the SA method, the BMA method yields higher
annual global terrestrial LE in the Southern Hemisphere and lower LE estimates over almost all high-latitude
regions in the Northern Hemisphere. This spatial dissimilarity is mainly caused by differences in the weights
of different LE algorithms for the BMAmethod and SAmethod, since the bias-correction-based BMAmethod,
weighted by recent performance results for the multiple models, has higher accuracy than the SA method
[Duan and Phillips, 2010;Wu et al., 2012;Miao et al., 2013]. Although all the LE models used in this study have
been evaluated against EC observations, there are marked spatial patterns in the accuracy for each algorithm
(Figure 10). Different algorithm parameterizations have an impact on their simulation by partitioning the
surface energy flux in a different manner [Robock et al., 2003]. Further work is still required to compare and
explain the differences between BMA-based LE and other LE products.

6. Conclusions

We described a BMA method that merges five process-based LE algorithms (MOD16, RRS-PM, PT-JPL, MS-PT,
and UMD-SEMI) for estimation of global terrestrial LE. Different LE algorithms driven by tower-specific
meteorology and GMAO-MERRA meteorology were evaluated using ground-based data for 2000–2009
collected from 240 flux tower sites across the world on all continents except for Antarctica. Compared to the
SAmethod, the BMA approach yields better LE results. Performance analysis for the BMAmethod for merging
five LE algorithms with ground-based observations and GMAO-MERRA meteorology demonstrated that the
method is applicable for global terrestrial LE mapping.

The evaluation results for terrestrial LE estimation using five process-based algorithms were grouped
according to nine major terrestrial biomes (DBF, DNF, EBF, ENF, MF, SAW, SHR, CRO, and GRA). The validation
results for algorithms driven by tower-specific meteorology and GMAO-MERRA meteorology show that the
MS-PT and UMD-SEMI algorithms yield better performance than the other algorithms for SHR, GRA, CRO,

Figure 12. Spatial differences in average annual global terrestrial LE (2001–2004) between the BMA and SA methods.

Journal of Geophysical Research: Atmospheres 10.1002/2013JD020864

YAO ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4540



SAW, and most of the forest types. However, for EBF sites, the tower-based MOD16 algorithm has the lowest
average RMSE, with an average bias of �12.2 W/m2 when driven by tower-specific meteorology. For cropland
and grass sites, the UMD-SEMI algorithmhas lower RMSEs than the other LE algorithms. The UMD-SEMI algorithm
shows good performance because its regression coefficients are calibrated using data from 64 flux tower sites.

These five process-based algorithms driven by tower and GMAO-MERRA meteorological data were merged
according to the BMA and SA methods using daily weights from the LE estimates and ground-based data.
The cross-validation results demonstrate that the RMSEs are lower and R2 is approximately 0.05 greater for
the BMA method compared to the SA method and each individual LE algorithm. The weights for different
algorithms were also calculated for different land cover types because the relative contributions of each
algorithm vary. The errors for EC LE observations, the accuracy of LE simulated by a single algorithm, and
selection of the conditional density function all influence the accuracy of the BMA method. Thus, it is still
necessary to explore the weights for different growing seasons and climate spaces for land vegetation.

The BMA method for merging five process-based LE algorithms was applied globally using data for
GMAO-MERRA, MODIS land cover, LAI/FPAR, NDVI, and albedo. The annual average global terrestrial LE
for 2001–2004 estimated by the BMA method is approximately 38.6 W/m2, which is in good agreement
with other studies. Currently, this LE algorithm is being used to produce the Global Land-Surface
Satellite (GLASS) LE product, which will be distributed by the Center for Global Change Data Processing
and Analysis of Beijing Normal University, China.

Appendix A

Table A1 shows a list of acronyms used in this study.

Table A1. Acronyms Used in This Study

Acronym Definition

ANN Asian Automatic Weather Station Network
AR4 Fourth Assessment Report
ATI Apparent Thermal Inertia
AVHRR Advanced Very High Resolution Spectroradiometer
BMA Bayesian Model Averaging
CEOP Coordinated Enhanced Observation Network of China
CERN Chinese Ecosystem Research Network
CRO Cropland
CSIRO Commonwealth Scientific and Industrial Research Organization of Australia
DA Data Assimilation
DBF Deciduous Broadleaf Forest
DNF Deciduous Needleleaf Forest
DT Diurnal Air-Temperature Range
e Vapor Pressure
E Conditional Expectation
EBF Evergreen Broadleaf Forest
EC Eddy Covariance
ECMWF European Centre for Medium-Range Weather Forecasts
EF Evaporation Fraction
ENF Evergreen Needleleaf Forest
ERA-Interim ERA-Interim Reanalysis
ET Evapotranspiration
EVI Enhanced Vegetation Index
FPAR Photosynthetically Active Radiation
G Ground Heat Flux
GEWEX Global Energy and Water Cycle Experiment
GLASS Global Land-Surface Satellite
GIMMS Global Inventory Modeling and Mapping Studies
GLDAS Global Land Data Assimilation System
GMAO Global Modeling and Assimilation Office
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