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Surface broadband emissivity (BBE) is a key parameter for estimating surface radia-
tion budget, but it is treated crudely in land-surface models because of a lack of global-
scale observational BBE data. In this study, the non-linear relationship between the
BBE that is calculated from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) emissivity product and the seven Moderate
Resolution Imaging Spectroradiometer (MODIS) narrowband albedos was established
individually for bare soils, transition areas, and vegetated areas using a dynamic
learning neural network (DLNN). The trained DLNN was tested using a vast array
of independent samples, and the results are robust with a bias and root-mean square
error (RMSE) of –1e−4 and 0.012 for bare soils, 2e−4 and 0.012 for transition areas, and
7e−4 and 0.010 for vegetated areas. Two independent field-measured emissivity data
sets that were measured over sand dunes were used to validate the DLNN. With respect
to the BBE that was calculated from the field-measured emissivities, the bias was
0.019. Ultimately, we introduced the strategy of generating a global land-surface BBE
product and presented an example of a global BBE map.

1. Introduction

Broadband emissivity (BBE) is a key parameter for estimating surface longwave net
radiation, which is a component of the surface radiation budget and an important parameter
for climate, weather, and hydrological models (Sellers et al. 1997; Jin and Liang 2006;
Liang et al. 2010; Cheng et al. 2011; Cheng and Liang 2013). A study of the simulated
energy balance sensitivity to changes in the emissivity over Northern Africa and the Arabian
Peninsula has shown that, on average, a decrease of 0.1 in the soil BBE increased the ground
and air temperatures by approximately 1.1°C and 0.8°C, respectively, and decreased the net
and upward longwave radiation by approximately 6.6 and 8.1 W m−2, respectively (Zhou,
Dickinson, Tian, et al. 2003). The study of Jin and Liang (2006) indicated that the
simulation results of climate models were greatly improved by incorporating the satellite-
derived BBE. However, because of the lack of adequate observation, a constant emissivity
value or very simple parameterizations are adopted in land-surface energy balance studies
and general circulation models (Jin and Liang 2006; Zhou, Dickinson, Tian, et al. 2003;
Bonan et al. 2002). For example, the National Center for Atmospheric Research (NCAR)
Community Land Model Version 2 (CLM2) calculates a canopy emissivity from the leaf
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area index (LAI) and sets the soil and snow emissivities to 0.96 and 0.97, respectively
(Bonan et al. 2002).

Generally, there are two methods that can be used to obtain the land-surface BBE. The
first method is a classification-based method. Each land-surface type was assigned a constant
BBE value that was derived from laboratory-measured emissivity data. For example, Wilber,
Kratz, and Gupta (1999) divided the earth’s surface into a 10′ × 10′ spatial resolution grid,
categorized the land surface into 18 scene types, and generated a global BBE (5–100 µm) map
by assigning a constant BBE value to each type that was based on the laboratory-measured
spectral data. The second method involves converting existing narrowband emissivity to
BBE. The BBE at a certain window (e.g. the 8–13.5 μm spectral range) can be expressed as a
linear combination of Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) or Moderate Resolution Imaging Spectroradiometer (MODIS) narrowband emis-
sivities (Ogawa et al. 2002).With this method, Ogawa, Schmugge, and Rokugawa (2008) and
Ogawa and Schmugge (2004) mapped the global monthly BBE (8–13.5 µm) using the
MODIS emissivity product (approximately 5 km) and a North Africa BBE (8–13.5 µm)
that used the ASTER emissivity product (90 m). These two methods share two common
drawbacks: (1) The BBE retrieval accuracy is limited. The first method cannot capture the
dramatic change in the soil BBE and the BBE seasonal change for vegetated areas. The
accuracy of the second method is prone to the uncertainties of current satellite emissivity
products. Land surface emissivity (LSE) retrieval from thermal infrared (TIR) radiometric
measurements is an ill-posed problem, i.e. solving N + 1 variables with N equations (Cheng,
Liu, et al. 2008; Liang 2004; Li et al. 2013; Schmugge et al. 2002; Jacob et al. 2004). The
solutions of ill-posed problems are sometimes unstable. For example, the V5.0 of the MODIS
emissivity product (MOD11B1) was overestimated in all bands with a mean absolute
difference of 0.0193 when compared to the lab results (Hulley, Hook, and Baldridge 2009).
(2) Either the spatial or temporal resolutions of the derived BBE are limited. The ASTER
revisit cycle is 16 days, which makes it impossible to produce a global LSE product on a
monthly scale. The spatial resolution of the MODIS narrowband emissivity product that was
computed through the day/night algorithm is approximately 5 km. A high-quality BBE data
set that has finer spatial and temporal resolutions will be useful for surface energy balance
studies on local scales and to validate coarse resolution data, which would improve our
understanding of the land–atmosphere interactions (Ogawa and Schmugge 2004; Ogawa,
Schmugge, and Rokugawa 2008; Liang 2011).

Tsvetsinskaya et al. (2002) found that the MODIS albedo is largely related to specific
soil and geological features in Northern Africa and the Arabian Peninsula, which suggests
that surface types can be used to characterize the albedo in those areas (Tsvetsinskaya
et al. 2002). Zhou, Dickinson, Ogawa, et al. (2003) showed that the ASTER BBE (in the
3–14 µm spectral range) has a linear relationship with MODIS’s seven narrowband and
three broadband albedos individually. The study of Ren et al. (2013) indicated that there
was a linear relationship between ASTER BBE (8–13.5 µm) and MODIS’s seven
narrowband albedos as well as NDVI over the relatively homogeneous vegetated areas
at a global scale. The contribution of NDVI to the predicted BBE was much smaller
compared to that of narrowband albedos. If this linkage between the ASTER BBE and
MODIS albedo exists globally for bare soils and vegetated areas, then we can obtain an 8
day 1 km BBE using the MODIS 8 day 1 km albedo product, which enables high spatial-
temporal resolution global BBE generation and benefits the studies of the surface radia-
tion budget. The objective of this study was to establish the relationship between the
MODIS albedo and the ASTER BBE on a global scale, to help generate a global 8 day 1
km land-surface BBE product from 2000 to 2010. The remainder of this article is
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organized as follows. Section 2 provides a detailed description of the data that was used.
Section 3 briefly describes the dynamic learning neural network (DLNN) and the scheme
for retrieval of the global land-surface BBE. Section 4 presents the retrieval results for
bare soils, mixed surfaces, and vegetated surfaces using the DLNN. Section 5 shows the
validation results for bare soils. The schemes for generating global BBE products are
discussed in Section 6, and a conclusion is provided in Section 7.

2. Data

The satellite data included are (1) the MODIS albedo products (MCD43B3 and
MCD43B2), (2) the MODIS normalized difference vegetation index (NDVI) product
(MOD13A2), and (3) the ASTER emissivity product (AST05). The temporal and spatial
resolutions of the MCD43B3 product are 8 days and 1 km, respectively. There are two types
of albedos: white-sky (diffuse) albedo and black-sky (direct) albedo. The seven narrowband
black-sky albedos are adopted here. The MODIS NDVI was used to identify different land
covers, such as bare soils, transition areas, and vegetated areas. The temporal and spatial
resolutions of the NDVI are 16 days and 1 km, respectively. The required auxiliary data are
the soil taxonomy and the MODIS land-cover products (MOD12Q1). The former was used
to identify different soil orders, and the latter was used to identify different vegetation types.
The soil taxonomy map was downloaded from the USDA NRCS (http://www.nrcs.usda.
gov/wps/portal/nrcs/detail/soils/use/?cid=nrcs142p2_054013), which is based on a reclas-
sification of the 1994 FAO-UNESCO soil map of the world combined with a soil climate
map. The map’s spatial resolution is approximately 0.0333°, with 5400 × 10,800 pixels. As
shown in Figure 1, there are 12 soil orders in the map. According to the soil taxonomy, we
selected the study areas and extracted the samples for training and testing the neural network
for bare soils. To extract as many bare soil pixels as possible, we attempted to select
relatively large and homogeneous areas as the study area for each soil order. The selected

Entisols

Gelisolss

Histosols

Spodosols

Andisols

Oxisols

Vertisols

Aridisols

Ultisols

Mollisols

Alfisols

Inceptisols

Figure 1. USDA NRCS soil taxonomy and selected study areas. Other classes, such as rocky land,
shifting sand, and ice/glacier, are not included in the map.
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study areas are shown in Figure 1. For the soil orders of histosols and spodosols, we tried
several places and time intervals but did not find bare soil pixels. We found it difficult to
locate bare soil pixels at high latitudes and in equatorial zones. Table 1 presents the
geographical locations of the selected study areas and the time intervals of the data used.
The MOD12Q1 is a yearly L3 Global 1 km SIN Grid product, which incorporated five
different land-cover classification schemes. The International Geosphere Biosphere
Programme (IGBP) global vegetation classification scheme was used to discriminate
vegetated and non-vegetated land covers. Based on the MOD12Q1, we selected 49 sites
from the sites of the MODIS land subsets. Among them, 40 sites were used to train the
neural network and 9 sites were used to test the trained neural network. The land cover of
both the training and test sites includes cropland, forest, grassland, savannas, and shrub-
lands. Figure 2 shows the distribution of these sites. All of the matched clear-sky satellite
data that range from 2000 to 2010 were downloaded.

3. Methods

A neural network is an interconnection of simple computational elements, or nodes, with
activation functions that are usually non-linear, monotonically increasing, and differenti-
able (Blackwell 2005). Without any a priori knowledge of the data distribution and the
relationship between the input variables and output variables, a neural network can
directly establish a relationship between the input variables and output variables from
the training ensembles. Furthermore, a neural network that has only a single hidden layer
with a sufficient number of nodes with non-linear activation functions is capable of
approximating any real-valued continuous scalar function to a given precision over a
finite domain (Hornik, Stinchcombe, and White 1989). Thus, a neural network is a
powerful tool for solving non-linear problems. A neural network has been successfully

Table 1. Geographic locations of selected study areas and time intervals for the data that were
used.

Soil order (Lat)/(Lon) Time interval

Alfisols (38.67° to 41.77°)/(–86.7° to –80.03°) January 2009 to March 2009;
January 2007 to March 2007

Andisols (18.3° to 20.7°)/(–103.3° to –96.7°) February 2009 to March 2009;
January 2008 to March 2008

Aridisols (26.7° to 43.4°)/(–120° to –103.3°) January 2009 to February 2009;
January 2008 to March 2008

Entisols (13.3° to 26.7°)/(–3.3° to 30°) February 2009 to February 2009;
January 2008 to February 2008

Gelisols (30.03° to 36.7°)/(86.63° to 96.63°) January 2008 to January 2008;
January 2009 to April 2009

Inceptisols (30.03° to 36.7°)/(86.63° to 96.63°) January 2008 to January 2008;
January 2009 to April 2009

Mollisols (30° to 53.4°)/(–113.3° to –93.4°) March 2009 to March 2009;
January 2008 to March 2008

Oxisols (to27.5° to to22°)/(–55° to –50°) July 2008 to September 2008;
January 2009 to January 2010

Ultisols (30° to 38.4°)/(–96.7° to –75°) October 2008 to February 2009;
January 2007 to April 2007

Vertisols (13.3° to 26.7°)/(73.3° to 80°) February 2009 to March 2009;
January 2008 to March 2008
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applied to parameter inversion in remote sensing, such as atmospheric composition
retrieval (Blackwell 2005; Aires et al. 2002; Turquety, Hadji-Lazaro, and Clerbaux
2002) and land-surface parameter retrieval (Cheng, Xiao, et al. 2008; Mao et al. 2008;
Smith 1993; Fang and Liang 2003; Jin and Liu 1997; Tang et al. 1992; Tedesco et al.
2004; Chen, Kao, and Tzeng 1995; Baret et al. 2007), which are strongly non-linear
problems. Regarding the specific land-surface parameter inversion problem, the accuracy
of a neural network can be better than that of physically based algorithms. For example,
the uncertainty of the global CYCLOPES LAI that was computed using the neural
network is better than MODIS and (GLOBCARBON) LAI (computed by a physically
based algorithm) (Fang et al. 2012).

We selected the DLNN (Tzeng et al. 1994; Chen, Kao, and Tzeng 1995) to obtain the
BBE from the MODIS albedos in this study. The DLNN was, in fact, a modified multi-
layer perceptron (MLP) in structure, and the Kalman filtering technique was used in its
learning process. The DLNN has the features of global minimization, convergence
warranty, and built-in optimization of a weighting function at little expense to computer
storage (Liou, Tzeng, and Chen 1999). An MLP neural network is composed of one input
layer, one output layer, and one or more hidden layers in between. A neuron is the basic
element of a neural network. The output signal y for a neuron can be expressed as

h ¼ wTxþ ’; (1)

y ¼ SðhÞ; (2)

where h is the activation, w ¼ ½w1w2:::wn�T is an n × 1 weight vector, the superscript T
denotes the transpose operation, x ¼ ½x1x2:::xn�T is an n × 1 input vector, ’ is an additive
bias, and S is an activation function. Assuming that there are n input nodes at an input
layer, m output nodes at an output layer, and p layers of hidden layers that have ni nodes at
the hidden layer i, the input of the neural network x ¼ ½x1x2:::xn�T is an n × 1 input vector,
and the output of the neural network y ¼ ½y1y2:::ym�T is an m × 1 output vector. We have
x ¼ Sðh0Þ and y ¼ Sðhpþ1Þ if we let n ¼ n0 and m ¼ npþ1. The output that is generated

Training sites

Testing sites

Figure 2. Distribution of sites used for training and testing the neural network for vegetated areas.

International Journal of Remote Sensing 1399

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 2

2:
24

 0
3 

A
pr

il 
20

14
 



from a set of input signals at each layer can be computed according to the following
recursive formula for i ¼ 1; 2; :::; pþ 1

hi ¼ WiSðhi�1Þ þΦi; (3)

where Φi ¼ ½’i1’i1:::’ini �T is an ni × 1 bias vector, hi ¼ ½hi1hi1:::hini �T is an ni × 1
activation vector, SðhiÞ ¼ ½Sðhi1ÞSðhi2Þ:::SðhiniÞ�T is an ni × 1 signal vector, and
Wi ¼ ½wi1wi2:::winiÞ�T is an ni × ni�1weight matrix, whereas the 1 × ni�1 weight vector
at layer i is defined as wij ¼ ½wij1wij2:::wijni�1 �T. The notations are defined as

’ij, bias of the jth node at layer i.
hij, activation of the jth node at layer i.
SðhijÞ, output signal of the jth node at layer i.
wijk , weight connected between the jth node at layer i and the kth node at layer i� 1.

By taking two modifications: (1) every node in the input layer and in all of the hidden
layers was fully connected to the output layer; and (2) the activation function was
removed from each output layer. The output of the modified network can be expressed
by the weighted sum of the polynomial basis vectors

y ¼ Wx; (4)

where W ¼ ½w1w2:::wm�T is an m × M weight matrix. Whereas the 1 × M long weight
vector is defined as wk ¼ ½w0k w1kj j::: wikj j::: wpk

�� ��’pþ1;k �, the 1 × ni weight vector is
defined as wik ¼ ½wi1kwi2k :::winik �, and wijk is the weight connected between the jth
node in layer i and the kth node in the output layer. This linearization allowed the use
of the Kalman filtering technique to update the weights during the learning process. Each
updated estimate of the neural network weight is computed from the previous estimate
and the new input data. The weight connected to each output node can be updated
independently, and the original problem can therefore be decomposed into m scalar
problems: for k ¼ 1; 2; :::;m

yk ¼ wkx: (5)

Using the Kalman filtering technique, Equation (5) can be modelled in the form

djk ¼ wj
kxþ υjk ; (6)

wjþ1
k ¼ wj

kA
j þ ujkB

j; (7)

where the superscript j denotes the added jth training pattern, Aj is an M × M state
transition matrix, Bj is an M × M diagonal matrix, ujk represents a 1 × M process error
vector, and υjk is a scalar measurement error. The update of the network weights is made
according to the following recursions, for j ¼ 1; 2; :::;N

ŵj
k ¼ ~wj

k þ gjk ½djk � ~wj
kx�; (8)

~wjþ1
k ¼ ŵj

kA
j; (9)
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where ~wj
k is the one-step predicted estimate, ŵj

k is the filter estimate of wj
k , and gjk is the

computed Kalman gain. The computed Kalman gain can be viewed as an adaptive
learning rate and is computed according to the following steps

gjk ¼ ð~Pj
kxÞT½xT~P

j
kx� υjk ��1; (10)

P̂
j
k ¼ ~P

j
k � gjk

Tð~Pj
kxÞT; (11)

P̂
jþ1
k ¼ AjTP̂

j
kA

j þ BjTQj
kB

j; (12)

where ~P
j
k ¼ E½ðwj

k � ~wj
kÞTðwj

k � ~wj
kÞ� and P̂

j
k ¼ E½ðwj

k � ŵj
kÞTðwj

k � ŵj
kÞ� are the one-step

predicted and filter estimate error covariance matrices, respectively.
The scheme for retrieving the global land-surface BBE is shown in Figure 3. The

ASTER 90 m emissivity product was aggregated to 1 km by averaging the values of
ASTER pixels that fall into the field of view (FOV) of a MODIS 1 km pixel to match the
spatial resolution of the MODIS albedo and the NDVI. Good quality and clear sky data
were extracted based on their respective quality control (QC) data. For example, only
albedo with good quality (full BRDF inversions) was used. Many studies (Ogawa,
Schmugge, and Rokugawa 2008; Liang 2004; Wang et al. 2005; Tang et al. 2011;
Ogawa et al. 2002) have shown that the BBEs within the 3–14 µm spectral domain can
be represented by a linear function of either the ASTER or the MODIS narrowband
emissivities, such as Equation (13)

Quality control &
Spatial-temproal match

Auxiliary
data

MODIS VI
& Albedo

Sample for
bare soils

(0 < NDVI < 0.156)

Sample for
vegetated areas

(0.1 < NDVI < 0.2)

Sample for
transition areas
(NDVI > 0.156)

TestingTraining

DLNN for
bare soils

DLNN for
transition areas

DLNN for
vegetated areas Ground validation

BBE for
vegetation areas
(NDVI > 0.156)

BBE for
transition areas

(0.1 < NDVI < 0.2)
BBE for vegetation

transition areas
(0.156 < NDVI < 0.2)

BBE for
bare soils

(0 < NDVI < 0.156)

BBE for bare
soils

(0 < NDVI < 0.1)

BBE for soil
transition areas

(0.1 < NDVI < 0.156)

BBE for
vegetation areas

(NDVI > 0.2)

ASTER
emissivity

Figure 3. Scheme for retrieving the global land-surface BBE from the MODIS albedo product.
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ebb ¼ constþ
XN
i¼1

aiei; (13)

where ebb is the BBE, N is the number of narrowband, "i is the ith narrowband
emissivity, and ai is the coefficient. With the approximately 1–200 µm emissivity
spectra of various surface types simulated by modern radiative transfer models, Cheng
et al. (2013) found that the BBE in the 8–13.5 µm spectral domain is the most
appropriate for calculating the surface longwave net radiation, and they derived the
corresponding linear conversion formula. Therefore, the BBE in the 8–13.5 µm spectral
domain was calculated from the ASTER five narrowband emissivities using their
formula in this study. Table 2 shows the TIR bands and their spectral ranges for the
ASTER, and Table 3 presents the coefficients for calculating the ASTER BBE in the 8–
13.5 µm spectral domain. Because of the different emissivity spectra features, we
classified the global land-surface into four types: water, snow/ice, bare soils, and
vegetated areas. Bare soils and vegetated areas were determined according to the
NDVI threshold that was used by a previous study (Momeni and Saradjian 2007); a
bare soil pixel was identified as 0 < NDVI < 0.156 and a vegetated pixel was identified
as NDVI ≥ 0.156. Misclassification can incur step discontinuities when generating a
global land-surface BBE product in sparsely vegetated areas because it is difficult to
determine whether the pixel corresponds to bare soils or vegetated areas. We propose
setting a transition area to mitigate the BBE difference between the bare soils and the
vegetated areas, using an NDVI threshold. In this study, pixels with NDVI values that
ranged from 0.1 to 0.2 were labelled as transition areas. Overall, the global land surface
was divided into five types is this study. We extracted the samples (Albedo–BBE pairs)
for bare soils, transition areas, and vegetated areas, and we developed the corresponding
DLNNs with these samples. Then, the developed DLNNs were used to obtain the BBE
for bare soils, transition areas, and vegetated areas. Note that there is overlap between
the bare soils and transition areas as well as between transition areas and vegetated
areas. In the generation of global land-surface BBE, the BBE of the pixels located in the
transition areas is the weighted average of their affiliations and depends on the NDVI of
the pixels. If the NDVI is between 0.1 and 0.156, its BBE is the average of those
calculated by the method for the bare soils and transition areas; if the NDVI lies between
0.156 and 0.2, its BBE is the average of those calculated by the method for the transition
areas and vegetated areas. The data extracted from the study areas listed in Table 1 were

Table 2. ASTER TIR bands and their spectral ranges. B10–B14 represent the five ASTER TIR
bands.

Bands B10 B11 B12 B13 B14

Spectral range (µm) 8.125–8.475 8.475–8.825 8.925–9.275 10.25–10.95 10.95–11.65

Table 3. Coefficients for calculating the BBE in the 8–13.5 µm spectral domain using the ASTER
narrowband emissivity product.

Constant B10 B11 B12 B13 B14 RMSE R2

0.197 0.025 0.057 0.237 0.333 0.146 0.005 0.983
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used for bare soils and transition areas, and the data corresponding to the sites that are
displayed in Figure 2 were used for vegetated areas.

4. Results

The accuracy of BBE retrieval was characterized by two indices: bias and root-mean-
square error (RMSE), which are defined as follows:

bias ¼
XN
i¼1

ðBBEi;inv � BBEi;trueÞ=N ; (14)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðBBEi;inv � BBEi;trueÞ2=ðN � 1Þ
vuut ; (15)

where BBEi;inv is the computed BBE, BBEi;true is the true BBE, and N is the total number
of samples.

4.1. Bare soil

A total of 117,762 samples were extracted from the study areas. The samples for each soil
order were randomly split into two parts; part one had 70% samples and part two had 30%
samples. In part one, all of the soil orders were combined together for training the DLNN, and
in part two, all of the soil orders were combined together for testing the trained DLNN. By
proper selection via trial and error, the structure of the DLNN was set at 7-50-50-1, which
means that seven nodes represent theMODIS black-sky albedos in the input layer, each of the
two hidden layers has 50 nodes, and one node at the output layer represents the output BBE.
Figure 4 compares the ASTER BBE and that predicted by the DLNN for bare soils. The
points for each soil order were distributed around the 1:1 line. The bias is –7e−6, and the
RMSE is 0.011. The bias and the RMSE for each soil order were also calculated and are listed
in Table 4. Although the maximum bias is 0.007, the absolute bias for more than half of the
soil orders is less than 0.005. The maximumRMSE is 0.014, and the RMSE for the remaining
nine soil orders is approximately 0.010. Figure 5 shows a histogram of the differences in the
results for the test set. The BBE predicted by the DLNN was in good agreement with the
ASTER BBE. Overall, the bias is –1e−4, and the RMSE is 0.012. The maximum absolute bias
and the RMSE are 0.008 and 0.019, respectively. The test results indicated that the DLNN can
be used to obtain the BBE for bare soils.

4.2. Transition areas

The structure of the DLNN for the transition areas was set to that for bare soils as a result
of trial and error. In total, 107,581 samples were extracted from the study areas.

Using the method that was adopted in Section 4.1, 70% of the samples were extracted
for training the DLNN, and 30% of the samples were extracted for testing the trained
DLNN. Figure 6 shows the comparison between the ASTER BBE and that predicted by
the DLNN for transition areas. The bias is –1e−6 and the RMSE is 0.010. The bias and
RMSE for each soil order were also calculated as listed in Table 5. Although the
maximum bias is 0.008, the absolute bias for most of the soil orders is less than 0.004.
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The maximum RMSE is 0.013, and the RMSE for the remaining nine soil orders is
approximately 0.010. The result is shown in Figure 7. The distribution of the differences
is similar to that in Figure 5. They all lie in the narrow range of [–0.06, 0.06]. This finding
could result from two reasons: (1) as mentioned in Section 4.1, the established non-linear
relationship for bare soil is accurate. The NDVI range for bare soils and transition zones
was overlapping, which means that we can derive better results by the DLNN for the
overlapped part; and (2) the DLNN can establish a non-linear relationship for the land
surface whose NDVI lines are between 0.156 and 0.2. The statistical results for the
transition zones are also similar to that for bare soils. As a whole, the bias is 2e−4 and
the RMSE is 0.012. The maximum absolute bias and RMSE are 0.007 and 0.016,
respectively, which are slightly smaller than that for bare soils. For this reason, the
difference histogram for the transition zones is slightly narrower than that for the bare
soils. Both the bias and the RMSE are acceptable. Thus, the DLNN can be used to obtain
the BBE for the transition areas.

Table 4. The bias and RMSE for each soil order of bare soil.

Soil order Bias RMSE

Alfisols −0.006 0.011
Andisols −0.005 0.012
Aridisols −0.001 0.010
Entisols 0.001 0.009
Gelisols −0.001 0.011
Inceptisols 0.006 0.014
Mollisols −0.001 0.006
Oxisols −0.007 0.012
Ultisols −0.005 0.014
Vertisols −0.004 0.008

0.98
RMS = 0.011
Bias = –0.000007

0.98

Vertisols

Alfisols
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Figure 4. Scatter plot of the BBE calculated by the ASTER narrowband emissivities versus that
predicted by the DLNN for bare soils.
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4.3. Vegetated areas

The structure of the DLNN for the vegetated areas was set to 7-50-50-1 through trial and error.
In total, we obtained approximately 1,200,000 samples for training the DLNN. The training
result is shown in Figure 8. Obviously, the ASTER BBE for the vegetated areas spans a broad
range from approximately 0.85 to 0.99. The DLNN can reproduce this variation range. As is
apparent, the divergence of the scatter plot was higher than those for the bare soils and
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Bias = –0.000001
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Aridisols
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Inceptisols
Mollisols
Oxisols
Ultisols

Figure 6. Scatter plot of the BBE calculated by the ASTER narrowband emissivities versus that
predicted by the DLNN for transition areas.
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Figure 5. Difference histograms of the ASTER BBE and that predicted by the DLNN for bare
soils.
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transition areas (see Figures 4 and 6). As seen from Figure 8, the divergence of the samples is
also significant when the ASTERBBE is larger, except for the samples at the rightmost with a
deep colour. This finding can be ascribed to the larger BBE variations in the vegetation itself.
When the NDVI is larger than 0.461, the vegetated surface can be considered fully vegetated
(Momeni and Saradjian 2007). The ASTERBBE for fully vegetated samples is 0.967 ± 0.008
in this study. The bias is 2e−5, which is slightly larger than the results for the bare soils and
transition areas, and the RMSE is 0.0095. The DLNN was tested by approximately 400,000
samples. The result is shown in Figure 9. The BBE difference ranges from approximately –
0.08 to 0.08, whereas most of the differences lie in the range of [–0.02, 0.02]. This result is
consistent with that in Figure 8. The divergences result in larger BBE differences, and good
performance of the DLNN brings a narrow distribution to the BBEs difference. The bias and
RMSE are 7e−4 and 0.010, respectively, which means that the DLNN was adapted to obtain
the BBE for the vegetated areas.

5. Validation

Validating the emissivity obtained from satellite remote-sensing data is quite complex
because the pixels are mixed and non-isothermal under most natural conditions,

Table 5. The bias and RMSE for each soil order of transition areas.

Soil order Bias RMSE

Alfisols 0.004 0.009
Andisols 0.008 0.013
Aridisols −0.001 0.009
Entisols 0.001 0.009
Gelisols 0.000 0.009
Inceptisols 0.006 0.013
Mollisols −0.001 0.006
Oxisols 0.001 0.011
Ultisols −0.002 0.012
Vertisols 0.003 0.010
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Figure 7. Difference histogram of the ASTER BBE and that predicted by the DLNN for transition
areas.
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especially at moderate or coarse spatial resolutions. Flat and homogeneous land surfaces,
such as large water bodies, sands, and grasslands, are always selected as the validation
sites. However, visually homogenous sites are not necessarily isothermal in the infrared
spectral domain. To our knowledge, the field-measured emissivity at a 1 km spatial
resolution is currently unavailable. The field-measured emissivity for vegetated areas is
extremely limited. Fortunately, some authors have performed field measurements over
homogeneous areas to validate the ASTER 90 m emissivity products (Hulley, Hook, and
Baldridge 2009; Sabol et al. 2009). These measurements can be used to validate the BBE
estimation method if the validation sites are large enough. For example, when Hulley
and Hook (Hulley, Hook, and Baldridge 2009) measured the in situ sands’ emissivity,
they found that large sand dunes have consistent and homogeneous mineralogy and
physical properties over long time periods. They conducted five separate field

–0.1
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0.5

Bias = 0.0007
RMS = 0.010

x 105
2

1.5
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–0.08 –0.06–0.04 –0.02 0
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0.02 0.06 0.08 0.10.04

Figure 9. Difference histograms of the ASTER BBE and those predicted by the DLNN for
vegetated areas.
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Figure 8. Scatter plot of the BBE calculated by the ASTER narrowband emissivities versus that
predicted by the DLNN for vegetated areas.

International Journal of Remote Sensing 1407

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

R
em

ot
e 

Se
ns

in
g 

A
pp

lic
at

io
n]

 a
t 2

2:
24

 0
3 

A
pr

il 
20

14
 



campaigns to collect sand samples at nine sand dunes in the spring and early summer of
2008. The emissivity spectra of the collected samples were measured in a laboratory
using a Nicolet 520 FT-IR spectrometer equipped with a Labsphere integrating sphere
(Baldridge et al. 2009). The ASTER narrowband emissivities were derived by convol-
ving the laboratory-measured emissivity spectra with the ASTER TIR spectral response
functions. The mineralogy of each dune site was also measured by X-ray diffraction
(XRD). More details on the dune sites can be found in their paper. Five relatively large
and homogeneous dune sites were selected to validate the trained DLNN for bare soils.
Each of the selected dune sites was of the aridisol soil order. The spatially matched
ASTER emissivity product and the MODIS albedo product, starting from March 2008
and ending in June 2008, were also downloaded. In total, we completed nine ASTER
imageries for both Algodones and Great Sands, eight ASTER imageries for Kelso and
Little Sahara, 10 ASTER imageries for Stovepipe Wells, and 34 ASTER imageries for
White Sands. For each dune site, the derived narrowband emissivity and downloaded
ASTER narrowband emissivity were converted to the BBE in the 8–13.5 spectral range
using the converting coefficients provided in Table 3, and the results were compared
with the BBE that was calculated from the DLNN. Table 6 presents the difference
between the computed BBE and the in situ BBE and the difference between the
computed BBE and the ASTER BBE. The computed BBE agreed well with the
ASTER BBE, and it had an average difference of 0.007. This result is consistent with
the comparison results for bare soils presented in Section 4.1. The difference between
the computed BBE and the in situ BBE was 0.019.

We also conducted a field campaign to validate the new algorithm that was proposed
in this article in June 2011. The validation site is located in the central part of the
Taklimakan Desert at Xinjiang Province of China, which is the largest active desert in
China and the second largest in the world. The Model 102 Portable Field Spectrometer
and a Labsphere gold plate were used to measure the spectral radiance emitted by the
target and the environment under clear sky. The emissivity spectrum was derived from the
radiometric measurements by the iterative spectrally smooth temperature and emissivity
separation (ISSTES) algorithm. For each site, we conducted three measurements; then,
we randomly chose three points within a distance of approximately 500 m from the site
and conducted three measurements at each point. The derived 12 emissivity spectra
were averaged and regarded as the emissivity of the site. The average emissivity was
converted into BBE in the 8–13.5 spectral range. In total, we obtained BBE at two sites.
The BBEs were 0.915 and 0.913 and the BBEs that were computed by the new
algorithm were 0.931 and 0.935, respectively. The average difference between the
computed BBE and the in situ BBE was 0.019. At this stage, we obtained only the

Table 6. BBE difference between the computed BBE and the in situ BBE as well as that between
the computed BBE and the ASTER BBE.

Dune sites In situ ASTER Retrieved Retrieved – in situ Retrieved – ASTER

Algodones 0.906 0.900 0.919 0.013 0.019
Great Sands 0.924 0.946 0.943 0.019 −0.003
Kelso 0.907 – 0.931 0.024 –
Little Sahara 0.914 0.947 0.943 0.029 −0.004
Stovepipe Wells 0.936 0.930 0.945 0.009 0.015
Taklimakan desert site1 0.915 – 0.931 0.016 –
Taklimakan desert site2 0.913 – 0.935 0.022 –
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validation data for bare soil in this study; the collection of more in situ data and more
extensive field campaigns are under way.

6. Global BBE mapping

The MODIS standard products, the MODIS NDVI data (MOD13A2), and the MODIS
albedo products (MCD43B3 and MCD43B2) are required to generate the global
land-surface BBE. The land surface was divided into five types: water, snow/ice, bare
soils (0 < NDVI ≤ 0.156), vegetation areas (NDVI ≥ 0.156), and transition areas (0.1 <
NDVI < 0.2). Different methods were adopted to determine their BBE. The emissivity
spectrum of smooth water surface can be simulated with the Fresnel equation (Born and
Wolf 1999), given its refractive index. Figure 10 shows the simulated pure water
emissivity spectrum, together with the emissivity spectra in the ASTER spectral library
and the MODIS UCSB spectral library. The measured emissivity spectra are distributed in
a very narrow band and agree well with the simulated emissivity spectrum. The BBE of
water in the ASTER spectral library is 0.984 for all three samples, and the value in the
MODIS UCSB spectral library is 0.985 for all five samples. The BBE of water was
specified as 0.985 in the generation of the global land-surface BBE. Regarding snow and
ice, we can use the radiative transfer model and the Fresnel equation to simulate their
emissivity spectra (Cheng et al. 2010). However, it is impractical to obtain the model
inputs, e.g. the snow’s effective radius, on a global scale. Moreover, the emissivity spectra
of snow/ice have an angle dependence, which currently cannot be well simulated by
radiative transfer models (Hori et al. 2006; Cheng et al. 2010). We calculated the BBE of
snow/ice using the emissivity spectra in the ASTER spectral library and the MODIS
UCSB spectral library and found that 0.985 can be used as their BBE. The error is less
than 0.005 when the viewing angle is less than 45°. For bare soils, transition areas, and
vegetated areas, we computed their BBE by the DLNN. When the NDVI is less than 0.1
or larger than 0.2, their BBE was the same as that computed by the DLNN. The transition
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Figure 10. Comparison of the simulated pure water emissivity spectrum (red), the water emissivity
spectra in the ASTER spectral library (blue), and the water emissivity spectra in the MODIS UCSB
emissivity spectra (green).
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areas were further divided into two parts based on the NDVI threshold: soil transition
areas (0.1 < NDVI ≤ 0.156) and vegetation transition areas (0.156 < NDVI < 0.2). For the
soil transition areas, the BBE is the average of those computed by the DLNNs for the bare
soils and the transition zone; in the vegetation transition areas, the BBE is the average
value computed by the DLNNs for the transition zone and the vegetation. Figure 11 is an
example of a generated 8 day 1 km global surface BBE in 2008.

7. Conclusions and discussion

The land-surface BBE is an essential parameter for estimating the surface longwave net
radiation in the energy balance, ecosystem, and climate models. The BBE that was
estimated from the satellite data has many unique merits and will contribute to land-
surface energy balance studies and numerical weather predictions. In this study, we
explored the non-linear relationship between the matched ASTER BBE and the MODIS
albedos for bare soils, transition zones, and vegetated areas individually by using the
DLNN. The DLNN was trained with a large number of samples that were extracted
from relatively homogeneous and representative areas. The trained DLNN was tested
using a group of samples that are independent of the training samples. The BBE that
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Figure 11. Global land-surface BBE on Julian day 145 (upper) and 321 (lower) in 2008.
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was computed by the trained DLNN was consistent with that calculated from the
ASTER narrowband emissivities. The bias and RMSE were –1e−4 and 0.012 for bare
soils, 2e−4 and 0.012 for transition areas, and 7e−4 and 0.010 for vegetated areas. The
results indicate that the non-linear relationships established by the DLNN are signifi-
cant and representative. The BBE that was computed by the DLNN for bare soils was
validated by in situ measurements from seven dune sites. We also downloaded the
spatial-temporal-matched ASTER emissivity and calculated the ASTER BBE. The
computed BBE agreed well with the ASTER BBE, with an average difference of
0.007. The average difference between the computed BBE and the in situ BBE was
0.019. Ultimately, we introduced the strategy of generating a global land-surface BBE
product and presented an example of a produced global BBE map. When the method
was streamlined to generate an 8 day 1 km global surface BBE, the 8 day 500 m
MODIS reflectance product (MOD09A1) will be aggregated into 1 km and then used to
calculate a 1 km NDVI. Furthermore, all of the input data will be processed by another
group within our team to ensure good data quality and spatial-temporal coverage. This
processing will include cloud clearing, spatial-temporal filtering, and gap filling. Note
that the aggregation of MOD09A1 data to 1 km will thus apply to the current MODIS
albedo product (MCD43, Collection 5) because the MODIS science team will only
provide albedos on a 500 m grid (MDC43A, Collection 6) in the future. We will update
our algorithm and production scheme accordingly.

As can be seen from the test results and the validation results over bare soils, the
developed DLNN can compute the BBE with an accuracy of better than 0.02. According
to the study of Ogawa et al., the accuracy of the BBE retrieval from converting the
ASTER narrowband emissivity is expected to be less than 0.02 (Ogawa and Schmugge
2004). Thus, the accuracy of the DLNN-computed BBE is comparable to that of the
ASTER BBE. This acceptable accuracy of the BBE retrieval by the DLNN can benefit
from two aspects: (1) the high accuracy in the ASTER emissivity and the MODIS albedo
products. The primary goal of the ASTER TES algorithm is to compute the narrowband
emissivity for the rocks and soils (Gillespie et al. 1998, 2011). The accuracy of the
emissivity inversion for the rocks and soils is guaranteed. Some other validation studies
show that the ASTER TIR emissivity achieved a high accuracy over arid and semi-arid
areas (Hulley, Hook, and Baldridge 2009; Mira et al. 2011; Matsunaga et al. 2001; Sabol
et al. 2009). Regarding the vegetation, the accuracy in the emissivity inversion cannot
meet the design goal due to either having a low spectral contrast in the vegetation
emissivity or being under high atmospheric temperatures and humidity, as reported by
several authors (Jimenez-Munoz et al. 2006; Gillespie et al. 2011). When the TES
algorithm was modified multiple times to accommodate the low emissivity contrasts
and errors in the measured data, the accuracy was improved over the first version
(Gustafson, Gillespie, and Yamada 2006). MODIS albedo has been extensively validated
and is one of the most robust products in the remote-sensing community (Schaaf et al.
2002; Cescatti et al. 2012; Wang et al. 2012; Hulley, Hook, and Baldridge 2009; Román
et al. 2009). (2) The DLNN established that the non-linear relationships between ASTER
BBE and MODIS albedos are robust.

When compared with the BBE that was calculated from the MODIS narrowband
emissivities that were computed by the day/night algorithm, the new BBE was found to
possess the following obvious advantages. (1) High spatial resolution. The spatial resolu-
tion of the new BBE is 1 km, whereas the BBE calculated from the MODIS emissivity
product has a resolution of approximately 5 km. A high-resolution net radiation product
that includes the BBE has been required by many applications, such as irrigation
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scheduling in agriculture. (2) Product availability. The MODIS day-night algorithm
requires clear-sky conditions during both day and night (Wan and Li 1997). This
requirement is strict and certainly results in many gaps in the computed emissivity
products. (3) Product accuracy. The MODIS narrowband emissivities are determined by
solving 14 variables in 14 equations (Wan and Li 1997), which makes them prone to
measurement noise and could lead to local convergence (Gillespie et al. 1998; Peres and
DaCamara 2006; Wan and Li 1997).

Because field measurements over vegetation canopies are rarely available, the com-
puted BBE over the vegetated areas was not validated. There are several canopy emissiv-
ity models that can be used to model canopy emissivity as well as their BBE (Sobrino,
Jimenez-Munoz, and Verhoef 2005; Snyder and Wan 1998). However, these models are
not well validated by field measurements. More work on measuring the canopy emissivity
at different spatial and temporal resolutions as well as the vegetation structure parameters
should be conducted for the validation of surface emissivity retrieval algorithms and
canopy emissivity models.

Theoretically, the hemispherical BBE is required to calculate surface longwave net
radiation (Cheng and Liang 2014). The satellite emissivity has directionality because what
the sensor measured is the radiance at a certain angle. In both the BBE calculated from the
existing narrowband emissivity product and the BBE computed in this study, the direc-
tionality is neglected. The hemispherical BBE and the BBE at a certain angle are different
in terms of both definition and magnitude. It is impractical to accumulate emissivity at
different observational angles and then to calculate the hemispherical emissivity by
integration. Meanwhile, the emissivity directional model is immature and lacks validation.
Thus, it is difficult to derive hemispherical BBE at the current stage. An alternative
approach is to improve and develop versatile physically based emissivity models that
can characterize the emissivity angular distribution for typical land-surface types. With
these models, we can either establish the relationship between hemispherical BBE and
BBE at a certain angle or simulate the hemispherical BBE that is provided with surface
characteristics.
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